Cargando…
Dual Attention Triplet Hashing Network for Image Retrieval
In recent years, learning-based hashing techniques have proven to be efficient for large-scale image retrieval. However, since most of the hash codes learned by deep hashing methods contain repetitive and correlated information, there are some limitations. In this paper, we propose a Dual Attention...
Autores principales: | Jiang, Zhukai, Lian, Zhichao, Wang, Jinping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8560054/ https://www.ncbi.nlm.nih.gov/pubmed/34733150 http://dx.doi.org/10.3389/fnbot.2021.728161 |
Ejemplares similares
-
Deep parameter-free attention hashing for image retrieval
por: Yang, Wenjing, et al.
Publicado: (2022) -
An Online Hashing Algorithm for Image Retrieval Based on Optical-Sensor Network
por: Chen, Xiao, et al.
Publicado: (2023) -
An Efficient Supervised Deep Hashing Method for Image Retrieval
por: Hussain, Abid, et al.
Publicado: (2022) -
Triplet Deep Hashing with Joint Supervised Loss Based on Deep Neural Networks
por: Li, Mingyong, et al.
Publicado: (2019) -
CLIP-Based Adaptive Graph Attention Network for Large-Scale Unsupervised Multi-Modal Hashing Retrieval
por: Li, Yewen, et al.
Publicado: (2023)