Cargando…
Application of machine learning to predict the occurrence of arrhythmia after acute myocardial infarction
BACKGROUND: Early identification of the occurrence of arrhythmia in patients with acute myocardial infarction plays an essential role in clinical decision-making. The present study attempted to use machine learning (ML) methods to build predictive models of arrhythmia after acute myocardial infarcti...
Autores principales: | Wang, Suhuai, Li, Jingjie, Sun, Lin, Cai, Jianing, Wang, Shihui, Zeng, Linwen, Sun, Shaoqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8560220/ https://www.ncbi.nlm.nih.gov/pubmed/34724938 http://dx.doi.org/10.1186/s12911-021-01667-8 |
Ejemplares similares
-
Clinical characteristics of COVID-19 with cardiac injury: a systematic review and meta-analysis
por: Zeng, Linwen, et al.
Publicado: (2020) -
Effects of ACEI and ARB on COVID-19 patients: A meta-analysis
por: Xue, Yang, et al.
Publicado: (2020) -
Effects of local cardiac denervation on cardiac innervation and ventricular arrhythmia after chronic myocardial infarction
por: Liu, Xudong, et al.
Publicado: (2017) -
Arrhythmias After Acute Myocardial Infarction
por: Frampton, Jennifer, et al.
Publicado: (2023) -
Electrocardiogram Heartbeat Classification for Arrhythmias and Myocardial Infarction
por: Pham, Bach-Tung, et al.
Publicado: (2023)