Cargando…

The NEOtrap – en route with a new single-molecule technique

This paper provides a perspective on potential applications of a new single-molecule technique, viz., the nanopore electro-osmotic trap (NEOtrap). This solid-state nanopore-based method uses locally induced electro-osmosis to form a hydrodynamic trap for single molecules. Ionic current recordings al...

Descripción completa

Detalles Bibliográficos
Autores principales: Schmid, Sonja, Dekker, Cees
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8560550/
https://www.ncbi.nlm.nih.gov/pubmed/34755079
http://dx.doi.org/10.1016/j.isci.2021.103007
_version_ 1784592945521885184
author Schmid, Sonja
Dekker, Cees
author_facet Schmid, Sonja
Dekker, Cees
author_sort Schmid, Sonja
collection PubMed
description This paper provides a perspective on potential applications of a new single-molecule technique, viz., the nanopore electro-osmotic trap (NEOtrap). This solid-state nanopore-based method uses locally induced electro-osmosis to form a hydrodynamic trap for single molecules. Ionic current recordings allow one to study an unlabeled protein or nanoparticle of arbitrary charge that can be held in the nanopore's most sensitive region for very long times. After motivating the need for improved single-molecule technologies, we sketch various possible technical extensions and combinations of the NEOtrap. We lay out diverse applications in biosensing, enzymology, protein folding, protein dynamics, fingerprinting of proteins, detecting post-translational modifications, and all that at the level of single proteins – illustrating the unique versatility and potential of the NEOtrap.
format Online
Article
Text
id pubmed-8560550
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-85605502021-11-08 The NEOtrap – en route with a new single-molecule technique Schmid, Sonja Dekker, Cees iScience Perspective This paper provides a perspective on potential applications of a new single-molecule technique, viz., the nanopore electro-osmotic trap (NEOtrap). This solid-state nanopore-based method uses locally induced electro-osmosis to form a hydrodynamic trap for single molecules. Ionic current recordings allow one to study an unlabeled protein or nanoparticle of arbitrary charge that can be held in the nanopore's most sensitive region for very long times. After motivating the need for improved single-molecule technologies, we sketch various possible technical extensions and combinations of the NEOtrap. We lay out diverse applications in biosensing, enzymology, protein folding, protein dynamics, fingerprinting of proteins, detecting post-translational modifications, and all that at the level of single proteins – illustrating the unique versatility and potential of the NEOtrap. Elsevier 2021-09-25 /pmc/articles/PMC8560550/ /pubmed/34755079 http://dx.doi.org/10.1016/j.isci.2021.103007 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Perspective
Schmid, Sonja
Dekker, Cees
The NEOtrap – en route with a new single-molecule technique
title The NEOtrap – en route with a new single-molecule technique
title_full The NEOtrap – en route with a new single-molecule technique
title_fullStr The NEOtrap – en route with a new single-molecule technique
title_full_unstemmed The NEOtrap – en route with a new single-molecule technique
title_short The NEOtrap – en route with a new single-molecule technique
title_sort neotrap – en route with a new single-molecule technique
topic Perspective
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8560550/
https://www.ncbi.nlm.nih.gov/pubmed/34755079
http://dx.doi.org/10.1016/j.isci.2021.103007
work_keys_str_mv AT schmidsonja theneotrapenroutewithanewsinglemoleculetechnique
AT dekkercees theneotrapenroutewithanewsinglemoleculetechnique
AT schmidsonja neotrapenroutewithanewsinglemoleculetechnique
AT dekkercees neotrapenroutewithanewsinglemoleculetechnique