Cargando…
Study of double-using ultrasonic effects on the structure of PbO nanorods fabricated by the sonochemical method
In this study, lead oxide (PbO) nanostructures are fabricated by an ultrasound-assisted sonochemical method, and re-ultrasonic effects on them are investigated. In the synthesis process, lead nitrate powder is used as a precursor, and potassium hydroxide serves as a precipitation agent. The resultin...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8560628/ https://www.ncbi.nlm.nih.gov/pubmed/34666237 http://dx.doi.org/10.1016/j.ultsonch.2021.105797 |
Sumario: | In this study, lead oxide (PbO) nanostructures are fabricated by an ultrasound-assisted sonochemical method, and re-ultrasonic effects on them are investigated. In the synthesis process, lead nitrate powder is used as a precursor, and potassium hydroxide serves as a precipitation agent. The resulting samples are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform-infrared spectroscopy (FT-IR). Re-ultrasound is also performed to terminate the growth of the PbO nanorods, stabilize them, and preserve their morphology. According to the XRD results, the re-ultrasonic effect did not change the crystal phases, and the tetragonal and orthorhombic crystal phases were preserved. The effect of the calcination time was investigated too; an increase in it led to a decrease in the irregular nanorods size but an increase in the crystallite size. |
---|