Cargando…
A deep learning approach for complex microstructure inference
Automated, reliable, and objective microstructure inference from micrographs is essential for a comprehensive understanding of process-microstructure-property relations and tailored materials development. However, such inference, with the increasing complexity of microstructures, requires advanced s...
Autores principales: | Durmaz, Ali Riza, Müller, Martin, Lei, Bo, Thomas, Akhil, Britz, Dominik, Holm, Elizabeth A., Eberl, Chris, Mücklich, Frank, Gumbsch, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8560760/ https://www.ncbi.nlm.nih.gov/pubmed/34725339 http://dx.doi.org/10.1038/s41467-021-26565-5 |
Ejemplares similares
-
Materials fatigue prediction using graph neural networks on microstructure representations
por: Thomas, Akhil, et al.
Publicado: (2023) -
Author Correction: Materials fatigue prediction using graph neural networks on microstructure representations
por: Thomas, Akhil, et al.
Publicado: (2023) -
Advanced Steel Microstructural Classification by Deep Learning Methods
por: Azimi, Seyed Majid, et al.
Publicado: (2018) -
Automated Quantitative Analyses of Fatigue-Induced Surface Damage by Deep Learning
por: Thomas, Akhil, et al.
Publicado: (2020) -
Inference of affordances and active motor control in simulated agents
por: Scholz, Fedor, et al.
Publicado: (2022)