Cargando…
Estimating the COVID-19 prevalence and mortality using a novel data-driven hybrid model based on ensemble empirical mode decomposition
In this study, we proposed a new data-driven hybrid technique by integrating an ensemble empirical mode decomposition (EEMD), an autoregressive integrated moving average (ARIMA), with a nonlinear autoregressive artificial neural network (NARANN), called the EEMD-ARIMA-NARANN model, to perform time s...
Autores principales: | Wang, Yongbin, Xu, Chunjie, Yao, Sanqiao, Wang, Lei, Zhao, Yingzheng, Ren, Jingchao, Li, Yuchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8560776/ https://www.ncbi.nlm.nih.gov/pubmed/34725416 http://dx.doi.org/10.1038/s41598-021-00948-6 |
Ejemplares similares
-
Forecasting the Tuberculosis Incidence Using a Novel Ensemble Empirical Mode Decomposition-Based Data-Driven Hybrid Model in Tibet, China
por: Li, Jizhen, et al.
Publicado: (2021) -
Estimating the Prevalence and Mortality of Coronavirus Disease 2019 (COVID-19) in the USA, the UK, Russia, and India
por: Wang, Yongbin, et al.
Publicado: (2020) -
An Advanced Data-Driven Hybrid Model of SARIMA-NNNAR for Tuberculosis Incidence Time Series Forecasting in Qinghai Province, China
por: Wang, Yongbin, et al.
Publicado: (2020) -
The long-term effects of meteorological parameters on pertussis infections in Chongqing, China, 2004–2018
por: Wang, Yongbin, et al.
Publicado: (2020) -
Forecasting the epidemiological trends of COVID-19 prevalence and mortality using the advanced α-Sutte Indicator
por: Wang, Yongbin, et al.
Publicado: (2020)