Cargando…
Integrated space–frequency–time domain feature extraction for MEG-based Alzheimer’s disease classification
Magnetoencephalography (MEG) has been combined with machine learning techniques, to recognize the Alzheimer’s disease (AD), one of the most common forms of dementia. However, most of the previous studies are limited to binary classification and do not fully utilize the two available MEG modalities (...
Autores principales: | Yang, Su, Bornot, Jose Miguel Sanchez, Fernandez, Ricardo Bruña, Deravi, Farzin, Wong-Lin, KongFatt, Prasad, Girijesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8560870/ https://www.ncbi.nlm.nih.gov/pubmed/34725742 http://dx.doi.org/10.1186/s40708-021-00145-1 |
Ejemplares similares
-
Detection of Mild Cognitive Impairment with MEG Functional Connectivity Using Wavelet-Based Neuromarkers
por: Yang, Su, et al.
Publicado: (2021) -
Robust EEG/MEG Based Functional Connectivity with the Envelope of the Imaginary Coherence: Sensor Space Analysis
por: Sanchez Bornot, Jose M., et al.
Publicado: (2018) -
Alzheimer's disease classification using cluster‐based labelling for graph neural network on heterogeneous data
por: McCombe, Niamh, et al.
Publicado: (2022) -
A neural circuit model of decision uncertainty and change-of-mind
por: Atiya, Nadim A. A., et al.
Publicado: (2019) -
A hybrid computational approach for efficient Alzheimer’s disease classification based on heterogeneous data
por: Ding, Xuemei, et al.
Publicado: (2018)