Cargando…
Impact of GAN-based lesion-focused medical image super-resolution on the robustness of radiomic features
Robust machine learning models based on radiomic features might allow for accurate diagnosis, prognosis, and medical decision-making. Unfortunately, the lack of standardized radiomic feature extraction has hampered their clinical use. Since the radiomic features tend to be affected by low voxel stat...
Autores principales: | de Farias, Erick Costa, di Noia, Christian, Han, Changhee, Sala, Evis, Castelli, Mauro, Rundo, Leonardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8560955/ https://www.ncbi.nlm.nih.gov/pubmed/34725417 http://dx.doi.org/10.1038/s41598-021-00898-z |
Ejemplares similares
-
Robustness of radiomic features in CT images with different slice thickness, comparing liver tumour and muscle
por: Escudero Sanchez, Lorena, et al.
Publicado: (2021) -
MADGAN: unsupervised medical anomaly detection GAN using multiple adjacent brain MRI slice reconstruction
por: Han, Changhee, et al.
Publicado: (2021) -
MRI-derived radiomics model for baseline prediction of prostate cancer progression on active surveillance
por: Sushentsev, Nikita, et al.
Publicado: (2021) -
Focus U-Net: A novel dual attention-gated CNN for polyp segmentation during colonoscopy
por: Yeung, Michael, et al.
Publicado: (2021) -
Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events
por: Le, Elizabeth P. V., et al.
Publicado: (2021)