Cargando…

Temozolomide abrogates the aggressiveness of urothelial carcinoma cells by enhancing senescence and depleting the side population

Patients with advanced urothelial carcinoma (UC) generally have poor prognoses due to therapeutic resistance. Furthermore, there are limited treatment options for advanced UC. Therefore, novel or effective chemotherapeutic agents are needed to improve patient survival. The present study was conducte...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Na-Yon, Hwang, Sung-Hyun, Yang, Yeseul, Kim, Yongbaek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8561215/
https://www.ncbi.nlm.nih.gov/pubmed/34733363
http://dx.doi.org/10.3892/ol.2021.13106
Descripción
Sumario:Patients with advanced urothelial carcinoma (UC) generally have poor prognoses due to therapeutic resistance. Furthermore, there are limited treatment options for advanced UC. Therefore, novel or effective chemotherapeutic agents are needed to improve patient survival. The present study was conducted to investigate the effect of temozolomide (TMZ) on UC cells so as to identify a potential method to overcome therapeutic resistance. TMZ is an alkylating agent with a target different from that of other anticancer drugs used to treat UC, such as cisplatin. TMZ enhanced the autophagic response and senescence, which was mediated via the p53 and p21 pathways. Inhibiting the autophagic response using chloroquine synergistically augmented the cytotoxic effect of TMZ on UC cells. TMZ significantly reduced the invasiveness of UC cells. Notably, the abundance of side population fraction was also significantly reduced following TMZ treatment. Considering that side population fraction is known to confer therapeutic resistance, it is noteworthy that the TMZ treatment markedly decreased side population fraction. Altogether, TMZ may have the potential to be applied as a part of an alternative treatment strategy to reduce the malignancy of UC cells.