Cargando…
Interpretable time-aware and co-occurrence-aware network for medical prediction
BACKGROUND: Disease prediction based on electronic health records (EHRs) is essential for personalized healthcare. But it’s hard due to the special data structure and the interpretability requirement of methods. The structure of EHR is hierarchical: each patient has a sequence of admissions, and eac...
Autores principales: | Sun, Chenxi, Dui, Hongna, Li, Hongyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8561378/ https://www.ncbi.nlm.nih.gov/pubmed/34727940 http://dx.doi.org/10.1186/s12911-021-01662-z |
Ejemplares similares
-
Predicting COVID-19 disease progression and patient outcomes based on temporal deep learning
por: Sun, Chenxi, et al.
Publicado: (2021) -
Are immigrant populations aware about their oral health status? A study among immigrants from Ethiopia
por: Zini, Avi, et al.
Publicado: (2009) -
Psychometric properties of a modified cultural awareness scale for use in higher education within the health and social care fields
por: Kumlien, Christine, et al.
Publicado: (2020) -
Sparse multi-output Gaussian processes for online medical time series prediction
por: Cheng, Li-Fang, et al.
Publicado: (2020) -
Interpreting HIV diagnostic histories into infection time estimates: analytical framework and online tool
por: Grebe, Eduard, et al.
Publicado: (2019)