Cargando…

A regulatory phosphorylation site on Mec1 controls chromatin occupancy of RNA polymerases during replication stress

Upon replication stress, budding yeast checkpoint kinase Mec1(ATR) triggers the downregulation of transcription, thereby reducing the level of RNA polymerase (RNAP) on chromatin to facilitate replication fork progression. Here, we identify a hydroxyurea‐induced phosphorylation site on Mec1, Mec1‐S19...

Descripción completa

Detalles Bibliográficos
Autores principales: Hurst, Verena, Challa, Kiran, Jonas, Felix, Forey, Romain, Sack, Ragna, Seebacher, Jan, Schmid, Christoph D, Barkai, Naama, Shimada, Kenji, Gasser, Susan M, Poli, Jérôme
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8561635/
https://www.ncbi.nlm.nih.gov/pubmed/34569643
http://dx.doi.org/10.15252/embj.2021108439
_version_ 1784593127522172928
author Hurst, Verena
Challa, Kiran
Jonas, Felix
Forey, Romain
Sack, Ragna
Seebacher, Jan
Schmid, Christoph D
Barkai, Naama
Shimada, Kenji
Gasser, Susan M
Poli, Jérôme
author_facet Hurst, Verena
Challa, Kiran
Jonas, Felix
Forey, Romain
Sack, Ragna
Seebacher, Jan
Schmid, Christoph D
Barkai, Naama
Shimada, Kenji
Gasser, Susan M
Poli, Jérôme
author_sort Hurst, Verena
collection PubMed
description Upon replication stress, budding yeast checkpoint kinase Mec1(ATR) triggers the downregulation of transcription, thereby reducing the level of RNA polymerase (RNAP) on chromatin to facilitate replication fork progression. Here, we identify a hydroxyurea‐induced phosphorylation site on Mec1, Mec1‐S1991, that contributes to the eviction of RNAPII and RNAPIII during replication stress. The expression of the non‐phosphorylatable mec1‐S1991A mutant reduces replication fork progression genome‐wide and compromises survival on hydroxyurea. This defect can be suppressed by destabilizing chromatin‐bound RNAPII through a TAP fusion to its Rpb3 subunit, suggesting that lethality in mec1‐S1991A mutants arises from replication–transcription conflicts. Coincident with a failure to repress gene expression on hydroxyurea in mec1‐S1991A cells, highly transcribed genes such as GAL1 remain bound at nuclear pores. Consistently, we find that nuclear pore proteins and factors controlling RNAPII and RNAPIII are phosphorylated in a Mec1‐dependent manner on hydroxyurea. Moreover, we show that Mec1 kinase also contributes to reduced RNAPII occupancy on chromatin during an unperturbed S phase by promoting degradation of the Rpb1 subunit.
format Online
Article
Text
id pubmed-8561635
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-85616352021-11-12 A regulatory phosphorylation site on Mec1 controls chromatin occupancy of RNA polymerases during replication stress Hurst, Verena Challa, Kiran Jonas, Felix Forey, Romain Sack, Ragna Seebacher, Jan Schmid, Christoph D Barkai, Naama Shimada, Kenji Gasser, Susan M Poli, Jérôme EMBO J Articles Upon replication stress, budding yeast checkpoint kinase Mec1(ATR) triggers the downregulation of transcription, thereby reducing the level of RNA polymerase (RNAP) on chromatin to facilitate replication fork progression. Here, we identify a hydroxyurea‐induced phosphorylation site on Mec1, Mec1‐S1991, that contributes to the eviction of RNAPII and RNAPIII during replication stress. The expression of the non‐phosphorylatable mec1‐S1991A mutant reduces replication fork progression genome‐wide and compromises survival on hydroxyurea. This defect can be suppressed by destabilizing chromatin‐bound RNAPII through a TAP fusion to its Rpb3 subunit, suggesting that lethality in mec1‐S1991A mutants arises from replication–transcription conflicts. Coincident with a failure to repress gene expression on hydroxyurea in mec1‐S1991A cells, highly transcribed genes such as GAL1 remain bound at nuclear pores. Consistently, we find that nuclear pore proteins and factors controlling RNAPII and RNAPIII are phosphorylated in a Mec1‐dependent manner on hydroxyurea. Moreover, we show that Mec1 kinase also contributes to reduced RNAPII occupancy on chromatin during an unperturbed S phase by promoting degradation of the Rpb1 subunit. John Wiley and Sons Inc. 2021-09-27 2021-11-02 /pmc/articles/PMC8561635/ /pubmed/34569643 http://dx.doi.org/10.15252/embj.2021108439 Text en © 2021 The Authors. Published under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Articles
Hurst, Verena
Challa, Kiran
Jonas, Felix
Forey, Romain
Sack, Ragna
Seebacher, Jan
Schmid, Christoph D
Barkai, Naama
Shimada, Kenji
Gasser, Susan M
Poli, Jérôme
A regulatory phosphorylation site on Mec1 controls chromatin occupancy of RNA polymerases during replication stress
title A regulatory phosphorylation site on Mec1 controls chromatin occupancy of RNA polymerases during replication stress
title_full A regulatory phosphorylation site on Mec1 controls chromatin occupancy of RNA polymerases during replication stress
title_fullStr A regulatory phosphorylation site on Mec1 controls chromatin occupancy of RNA polymerases during replication stress
title_full_unstemmed A regulatory phosphorylation site on Mec1 controls chromatin occupancy of RNA polymerases during replication stress
title_short A regulatory phosphorylation site on Mec1 controls chromatin occupancy of RNA polymerases during replication stress
title_sort regulatory phosphorylation site on mec1 controls chromatin occupancy of rna polymerases during replication stress
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8561635/
https://www.ncbi.nlm.nih.gov/pubmed/34569643
http://dx.doi.org/10.15252/embj.2021108439
work_keys_str_mv AT hurstverena aregulatoryphosphorylationsiteonmec1controlschromatinoccupancyofrnapolymerasesduringreplicationstress
AT challakiran aregulatoryphosphorylationsiteonmec1controlschromatinoccupancyofrnapolymerasesduringreplicationstress
AT jonasfelix aregulatoryphosphorylationsiteonmec1controlschromatinoccupancyofrnapolymerasesduringreplicationstress
AT foreyromain aregulatoryphosphorylationsiteonmec1controlschromatinoccupancyofrnapolymerasesduringreplicationstress
AT sackragna aregulatoryphosphorylationsiteonmec1controlschromatinoccupancyofrnapolymerasesduringreplicationstress
AT seebacherjan aregulatoryphosphorylationsiteonmec1controlschromatinoccupancyofrnapolymerasesduringreplicationstress
AT schmidchristophd aregulatoryphosphorylationsiteonmec1controlschromatinoccupancyofrnapolymerasesduringreplicationstress
AT barkainaama aregulatoryphosphorylationsiteonmec1controlschromatinoccupancyofrnapolymerasesduringreplicationstress
AT shimadakenji aregulatoryphosphorylationsiteonmec1controlschromatinoccupancyofrnapolymerasesduringreplicationstress
AT gassersusanm aregulatoryphosphorylationsiteonmec1controlschromatinoccupancyofrnapolymerasesduringreplicationstress
AT polijerome aregulatoryphosphorylationsiteonmec1controlschromatinoccupancyofrnapolymerasesduringreplicationstress
AT hurstverena regulatoryphosphorylationsiteonmec1controlschromatinoccupancyofrnapolymerasesduringreplicationstress
AT challakiran regulatoryphosphorylationsiteonmec1controlschromatinoccupancyofrnapolymerasesduringreplicationstress
AT jonasfelix regulatoryphosphorylationsiteonmec1controlschromatinoccupancyofrnapolymerasesduringreplicationstress
AT foreyromain regulatoryphosphorylationsiteonmec1controlschromatinoccupancyofrnapolymerasesduringreplicationstress
AT sackragna regulatoryphosphorylationsiteonmec1controlschromatinoccupancyofrnapolymerasesduringreplicationstress
AT seebacherjan regulatoryphosphorylationsiteonmec1controlschromatinoccupancyofrnapolymerasesduringreplicationstress
AT schmidchristophd regulatoryphosphorylationsiteonmec1controlschromatinoccupancyofrnapolymerasesduringreplicationstress
AT barkainaama regulatoryphosphorylationsiteonmec1controlschromatinoccupancyofrnapolymerasesduringreplicationstress
AT shimadakenji regulatoryphosphorylationsiteonmec1controlschromatinoccupancyofrnapolymerasesduringreplicationstress
AT gassersusanm regulatoryphosphorylationsiteonmec1controlschromatinoccupancyofrnapolymerasesduringreplicationstress
AT polijerome regulatoryphosphorylationsiteonmec1controlschromatinoccupancyofrnapolymerasesduringreplicationstress