Cargando…
PrognosiT: Pathway/gene set-based tumour volume prediction using multiple kernel learning
BACKGROUND: Identification of molecular mechanisms that determine tumour progression in cancer patients is a prerequisite for developing new disease treatment guidelines. Even though the predictive performance of current machine learning models is promising, extracting significant and meaningful kno...
Autores principales: | Bektaş, Ayyüce Begüm, Gönen, Mehmet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8561914/ https://www.ncbi.nlm.nih.gov/pubmed/34727887 http://dx.doi.org/10.1186/s12859-021-04460-6 |
Ejemplares similares
-
Fast and interpretable genomic data analysis using multiple approximate kernel learning
por: Bektaş, Ayyüce Begüm, et al.
Publicado: (2022) -
Discriminating early- and late-stage cancers using multiple kernel learning on gene sets
por: Rahimi, Arezou, et al.
Publicado: (2018) -
LncRNA PELATON, a Ferroptosis Suppressor and Prognositic Signature for GBM
por: Fu, Haijuan, et al.
Publicado: (2022) -
Prognositic value of CD73-adenosinergic pathway in solid tumor: A meta-analysis and systematic review
por: Wang, Rong, et al.
Publicado: (2017) -
Prognositic significance of P-cadherin expression in breast cancer: Protocol for a meta-analysis
por: Xi, Yupeng, et al.
Publicado: (2019)