Cargando…
Prediction of long-term hospitalisation and all-cause mortality in patients with chronic heart failure on Dutch claims data: a machine learning approach
BACKGROUND: Accurately predicting which patients with chronic heart failure (CHF) are particularly vulnerable for adverse outcomes is of crucial importance to support clinical decision making. The goal of the current study was to examine the predictive value on long term heart failure (HF) hospitali...
Autores principales: | van der Galiën, Onno P., Hoekstra, René C., Gürgöze, Muhammed T., Manintveld, Olivier C., van den Bunt, Mark R., Veenman, Cor J., Boersma, Eric |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8561992/ https://www.ncbi.nlm.nih.gov/pubmed/34724933 http://dx.doi.org/10.1186/s12911-021-01657-w |
Ejemplares similares
-
Impact of sex differences in co‐morbidities and medication adherence on outcome in 25 776 heart failure patients
por: Gürgöze, Muhammed T., et al.
Publicado: (2020) -
Finding Dutch natives in online forums
por: van den Boom, Bernard, et al.
Publicado: (2018) -
Influence of chronic kidney disease and other risk factors pre-heart transplantation on malignancy incidence post-heart transplantation
por: Roest, Stefan, et al.
Publicado: (2023) -
Outcome measures for oral health based on clinical assessments and claims data: feasibility evaluation in practice
por: Hummel, Riët, et al.
Publicado: (2017) -
Telemonitoring for heart failure: a meta-analysis
por: Scholte, Niels T B, et al.
Publicado: (2023)