Cargando…

Systematic detection of m(6)A-modified transcripts at single-molecule and single-cell resolution

Epigenetic modifications control the stability and translation of mRNA molecules. Here, we present a microscopy-based platform for quantifying modified RNA molecules and for relating the modification patterns to single-cell phenotypes. We directly capture mRNAs from cell lysates on oligo-dT-coated c...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Kyung Lock, van Galen, Peter, Hovestadt, Volker, Rahme, Gilbert J., Andreishcheva, Ekaterina N., Shinde, Abhijeet, Gaskell, Elizabeth, Jones, Daniel R., Shema, Efrat, Bernstein, Bradley E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8562683/
https://www.ncbi.nlm.nih.gov/pubmed/34734208
http://dx.doi.org/10.1016/j.crmeth.2021.100061
Descripción
Sumario:Epigenetic modifications control the stability and translation of mRNA molecules. Here, we present a microscopy-based platform for quantifying modified RNA molecules and for relating the modification patterns to single-cell phenotypes. We directly capture mRNAs from cell lysates on oligo-dT-coated coverslips, then visually detect and sequence individual m(6)A-immunolabled transcripts without amplification. Integration of a nanoscale device enabled us to isolate single cells on the platform, and thereby relate single-cell m(6)A modification states to gene expression signatures and cell surface markers. Application of the platform to MUTZ3 leukemia cells revealed a marked reduction in cellular m(6)A levels as CD34(+) leukemic progenitors differentiate to CD14(+) myeloid cells. We then coupled single-molecule m(6)A detection with fluorescence in situ hybridization (FISH) to relate mRNA and m(6)A levels of individual genes to single-cell phenotypes. This single-cell multi-modal assay suite can empower investigations of RNA modifications in rare populations and single cells.