_version_ 1784593334260465664
author Oala, Luis
Murchison, Andrew G.
Balachandran, Pradeep
Choudhary, Shruti
Fehr, Jana
Leite, Alixandro Werneck
Goldschmidt, Peter G.
Johner, Christian
Schörverth, Elora D. M.
Nakasi, Rose
Meyer, Martin
Cabitza, Federico
Baird, Pat
Prabhu, Carolin
Weicken, Eva
Liu, Xiaoxuan
Wenzel, Markus
Vogler, Steffen
Akogo, Darlington
Alsalamah, Shada
Kazim, Emre
Koshiyama, Adriano
Piechottka, Sven
Macpherson, Sheena
Shadforth, Ian
Geierhofer, Regina
Matek, Christian
Krois, Joachim
Sanguinetti, Bruno
Arentz, Matthew
Bielik, Pavol
Calderon-Ramirez, Saul
Abbood, Auss
Langer, Nicolas
Haufe, Stefan
Kherif, Ferath
Pujari, Sameer
Samek, Wojciech
Wiegand, Thomas
author_facet Oala, Luis
Murchison, Andrew G.
Balachandran, Pradeep
Choudhary, Shruti
Fehr, Jana
Leite, Alixandro Werneck
Goldschmidt, Peter G.
Johner, Christian
Schörverth, Elora D. M.
Nakasi, Rose
Meyer, Martin
Cabitza, Federico
Baird, Pat
Prabhu, Carolin
Weicken, Eva
Liu, Xiaoxuan
Wenzel, Markus
Vogler, Steffen
Akogo, Darlington
Alsalamah, Shada
Kazim, Emre
Koshiyama, Adriano
Piechottka, Sven
Macpherson, Sheena
Shadforth, Ian
Geierhofer, Regina
Matek, Christian
Krois, Joachim
Sanguinetti, Bruno
Arentz, Matthew
Bielik, Pavol
Calderon-Ramirez, Saul
Abbood, Auss
Langer, Nicolas
Haufe, Stefan
Kherif, Ferath
Pujari, Sameer
Samek, Wojciech
Wiegand, Thomas
author_sort Oala, Luis
collection PubMed
description Developers proposing new machine learning for health (ML4H) tools often pledge to match or even surpass the performance of existing tools, yet the reality is usually more complicated. Reliable deployment of ML4H to the real world is challenging as examples from diabetic retinopathy or Covid-19 screening show. We envision an integrated framework of algorithm auditing and quality control that provides a path towards the effective and reliable application of ML systems in healthcare. In this editorial, we give a summary of ongoing work towards that vision and announce a call for participation to the special issue  Machine Learning for Health: Algorithm Auditing & Quality Control in this journal to advance the practice of ML4H auditing. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10916-021-01783-y.
format Online
Article
Text
id pubmed-8562935
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-85629352021-11-03 Machine Learning for Health: Algorithm Auditing & Quality Control Oala, Luis Murchison, Andrew G. Balachandran, Pradeep Choudhary, Shruti Fehr, Jana Leite, Alixandro Werneck Goldschmidt, Peter G. Johner, Christian Schörverth, Elora D. M. Nakasi, Rose Meyer, Martin Cabitza, Federico Baird, Pat Prabhu, Carolin Weicken, Eva Liu, Xiaoxuan Wenzel, Markus Vogler, Steffen Akogo, Darlington Alsalamah, Shada Kazim, Emre Koshiyama, Adriano Piechottka, Sven Macpherson, Sheena Shadforth, Ian Geierhofer, Regina Matek, Christian Krois, Joachim Sanguinetti, Bruno Arentz, Matthew Bielik, Pavol Calderon-Ramirez, Saul Abbood, Auss Langer, Nicolas Haufe, Stefan Kherif, Ferath Pujari, Sameer Samek, Wojciech Wiegand, Thomas J Med Syst Implementation Science & Operations Management Developers proposing new machine learning for health (ML4H) tools often pledge to match or even surpass the performance of existing tools, yet the reality is usually more complicated. Reliable deployment of ML4H to the real world is challenging as examples from diabetic retinopathy or Covid-19 screening show. We envision an integrated framework of algorithm auditing and quality control that provides a path towards the effective and reliable application of ML systems in healthcare. In this editorial, we give a summary of ongoing work towards that vision and announce a call for participation to the special issue  Machine Learning for Health: Algorithm Auditing & Quality Control in this journal to advance the practice of ML4H auditing. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10916-021-01783-y. Springer US 2021-11-02 2021 /pmc/articles/PMC8562935/ /pubmed/34729675 http://dx.doi.org/10.1007/s10916-021-01783-y Text en © The Author(s) 2021, corrected publication 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Implementation Science & Operations Management
Oala, Luis
Murchison, Andrew G.
Balachandran, Pradeep
Choudhary, Shruti
Fehr, Jana
Leite, Alixandro Werneck
Goldschmidt, Peter G.
Johner, Christian
Schörverth, Elora D. M.
Nakasi, Rose
Meyer, Martin
Cabitza, Federico
Baird, Pat
Prabhu, Carolin
Weicken, Eva
Liu, Xiaoxuan
Wenzel, Markus
Vogler, Steffen
Akogo, Darlington
Alsalamah, Shada
Kazim, Emre
Koshiyama, Adriano
Piechottka, Sven
Macpherson, Sheena
Shadforth, Ian
Geierhofer, Regina
Matek, Christian
Krois, Joachim
Sanguinetti, Bruno
Arentz, Matthew
Bielik, Pavol
Calderon-Ramirez, Saul
Abbood, Auss
Langer, Nicolas
Haufe, Stefan
Kherif, Ferath
Pujari, Sameer
Samek, Wojciech
Wiegand, Thomas
Machine Learning for Health: Algorithm Auditing & Quality Control
title Machine Learning for Health: Algorithm Auditing & Quality Control
title_full Machine Learning for Health: Algorithm Auditing & Quality Control
title_fullStr Machine Learning for Health: Algorithm Auditing & Quality Control
title_full_unstemmed Machine Learning for Health: Algorithm Auditing & Quality Control
title_short Machine Learning for Health: Algorithm Auditing & Quality Control
title_sort machine learning for health: algorithm auditing & quality control
topic Implementation Science & Operations Management
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8562935/
https://www.ncbi.nlm.nih.gov/pubmed/34729675
http://dx.doi.org/10.1007/s10916-021-01783-y
work_keys_str_mv AT oalaluis machinelearningforhealthalgorithmauditingqualitycontrol
AT murchisonandrewg machinelearningforhealthalgorithmauditingqualitycontrol
AT balachandranpradeep machinelearningforhealthalgorithmauditingqualitycontrol
AT choudharyshruti machinelearningforhealthalgorithmauditingqualitycontrol
AT fehrjana machinelearningforhealthalgorithmauditingqualitycontrol
AT leitealixandrowerneck machinelearningforhealthalgorithmauditingqualitycontrol
AT goldschmidtpeterg machinelearningforhealthalgorithmauditingqualitycontrol
AT johnerchristian machinelearningforhealthalgorithmauditingqualitycontrol
AT schorvertheloradm machinelearningforhealthalgorithmauditingqualitycontrol
AT nakasirose machinelearningforhealthalgorithmauditingqualitycontrol
AT meyermartin machinelearningforhealthalgorithmauditingqualitycontrol
AT cabitzafederico machinelearningforhealthalgorithmauditingqualitycontrol
AT bairdpat machinelearningforhealthalgorithmauditingqualitycontrol
AT prabhucarolin machinelearningforhealthalgorithmauditingqualitycontrol
AT weickeneva machinelearningforhealthalgorithmauditingqualitycontrol
AT liuxiaoxuan machinelearningforhealthalgorithmauditingqualitycontrol
AT wenzelmarkus machinelearningforhealthalgorithmauditingqualitycontrol
AT voglersteffen machinelearningforhealthalgorithmauditingqualitycontrol
AT akogodarlington machinelearningforhealthalgorithmauditingqualitycontrol
AT alsalamahshada machinelearningforhealthalgorithmauditingqualitycontrol
AT kazimemre machinelearningforhealthalgorithmauditingqualitycontrol
AT koshiyamaadriano machinelearningforhealthalgorithmauditingqualitycontrol
AT piechottkasven machinelearningforhealthalgorithmauditingqualitycontrol
AT macphersonsheena machinelearningforhealthalgorithmauditingqualitycontrol
AT shadforthian machinelearningforhealthalgorithmauditingqualitycontrol
AT geierhoferregina machinelearningforhealthalgorithmauditingqualitycontrol
AT matekchristian machinelearningforhealthalgorithmauditingqualitycontrol
AT kroisjoachim machinelearningforhealthalgorithmauditingqualitycontrol
AT sanguinettibruno machinelearningforhealthalgorithmauditingqualitycontrol
AT arentzmatthew machinelearningforhealthalgorithmauditingqualitycontrol
AT bielikpavol machinelearningforhealthalgorithmauditingqualitycontrol
AT calderonramirezsaul machinelearningforhealthalgorithmauditingqualitycontrol
AT abboodauss machinelearningforhealthalgorithmauditingqualitycontrol
AT langernicolas machinelearningforhealthalgorithmauditingqualitycontrol
AT haufestefan machinelearningforhealthalgorithmauditingqualitycontrol
AT kherifferath machinelearningforhealthalgorithmauditingqualitycontrol
AT pujarisameer machinelearningforhealthalgorithmauditingqualitycontrol
AT samekwojciech machinelearningforhealthalgorithmauditingqualitycontrol
AT wiegandthomas machinelearningforhealthalgorithmauditingqualitycontrol