Cargando…

Effects of dietary supplementation of herbal active ingredients promoting insulin-like growth factor-1 secretion on production performance, egg quality, blood hematology, and excreta gas emission in laying hens

OBJECTIVE: The purpose of this study was to evaluate the effects of supplementing herbal active ingredients (YGF251) which can promote the secretion of insulin-like growth factor-1 (IGF-1) in the diet on production performance, egg quality, blood hematology, and excreta gas emission in laying hens....

Descripción completa

Detalles Bibliográficos
Autores principales: Dang, De Xin, Chung, Yi Hyung, Kim, In Ho
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Animal Bioscience 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8563257/
https://www.ncbi.nlm.nih.gov/pubmed/34237932
http://dx.doi.org/10.5713/ab.20.0762
Descripción
Sumario:OBJECTIVE: The purpose of this study was to evaluate the effects of supplementing herbal active ingredients (YGF251) which can promote the secretion of insulin-like growth factor-1 (IGF-1) in the diet on production performance, egg quality, blood hematology, and excreta gas emission in laying hens. METHODS: A total of 288 ISA Brown (41-week-old) laying hens with an initial body weight of 1.83±0.68 kg were randomly assigned to 1 of 4 dietary treatments in a randomized block design based on body weight. Each treatment had 12 replicate cages having 6 adjacent cages per replicate (hens are kept in cages alone). The experimental period was 35 days. Dietary treatments were based on the corn-soybean meal-wheat-based basal diet and supplemented with 0.00%, 0.05%, 0.10%, or 0.15% YGF251. RESULTS: There was a linear increased egg weight in weeks 1 to 5 (p<0.05), egg mass in week 1 (p<0.05) and weeks 1 to 5 (p<0.05), egg strength on day 7 (p<0.05), 21 (p<0.01), and 35 (p<0.01), eggshell thickness on day 21 (p<0.05) and 35 (p<0.01), haugh unit on day 21 (p< 0.01) and 35 (p<0.05), serum IGF-1 concentration on day 21 (p<0.05) and 35 (p<0.01), and serum total protein concentration on day 35 (p<0.05) were observed with the supplementing YGF251 increased in the diet, while feed conversion ratio in weeks 1 to 5 (p<0.05) and excreta ammonia emission (p<0.01) decreased linearly with the dose of YGF251 increased. CONCLUSION: Dietary supplementation of YGF251 positively affected the production performance and egg quality of laying hens through increasing serum IGF-1 concentration in a dose-dependent manner. Moreover, YGF251 supplementation improved barn environment by reducing excreta noxious gas emission.