Cargando…

Redox Regulation in Cancer Cells during Metastasis

Metastasis is an inefficient process in which the vast majority of cancer cells are fated to die, partly because they experience oxidative stress. Metastasizing cancer cells migrate through diverse environments that differ dramatically from their tumor of origin, leading to redox imbalances. The rar...

Descripción completa

Detalles Bibliográficos
Autores principales: Tasdogan, Alpaslan, Ubellacker, Jessalyn M., Morrison, Sean J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for Cancer Research 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8563381/
https://www.ncbi.nlm.nih.gov/pubmed/34649956
http://dx.doi.org/10.1158/2159-8290.CD-21-0558
Descripción
Sumario:Metastasis is an inefficient process in which the vast majority of cancer cells are fated to die, partly because they experience oxidative stress. Metastasizing cancer cells migrate through diverse environments that differ dramatically from their tumor of origin, leading to redox imbalances. The rare metastasizing cells that survive undergo reversible metabolic changes that confer oxidative stress resistance. We review the changes in redox regulation that cancer cells undergo during metastasis. By better understanding these mechanisms, it may be possible to develop pro-oxidant therapies that block disease progression by exacerbating oxidative stress in cancer cells. SIGNIFICANCE: Oxidative stress often limits cancer cell survival during metastasis, raising the possibility of inhibiting cancer progression with pro-oxidant therapies. This is the opposite strategy of treating patients with antioxidants, an approach that worsened outcomes in large clinical trials.