Cargando…
Efficient algorithms for calculating the probability distribution of the sum of hypergeometric-distributed random variables
In probability theory and statistics, the probability distribution of the sum of two or more independent and identically distributed (i.i.d.) random variables is the convolution of their individual distributions. While convoluting random variables following a binomial, geometric or Poisson distribut...
Autores principales: | Johannssen, Arne, Chukhrova, Nataliya, Castagliola, Philippe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8563477/ https://www.ncbi.nlm.nih.gov/pubmed/34754778 http://dx.doi.org/10.1016/j.mex.2021.101507 |
Ejemplares similares
-
Fast calculation of scattering patterns using hypergeometric function algorithms
por: Wagener, Michael, et al.
Publicado: (2023) -
Computing sums in terms of beta, polygamma, and Gauss hypergeometric functions
por: Qi, Feng, et al.
Publicado: (2020) -
Random variables and probability distributions
por: Cramér, Harald
Publicado: (1962) -
Sato-Tate distribution of p-adic hypergeometric functions
por: Pujahari, Sudhir, et al.
Publicado: (2022) -
Probability distributions of a single random variable
por: Humphreys, H M, et al.
Publicado: (2014)