Cargando…
Machine Learning Prediction of Treatment Outcome in Late-Life Depression
Background: Recent evidence suggests that integration of multi-modal data improves performance in machine learning prediction of depression treatment outcomes. Here, we compared the predictive performance of three machine learning classifiers using differing combinations of sociodemographic characte...
Autores principales: | Grzenda, Adrienne, Speier, William, Siddarth, Prabha, Pant, Anurag, Krause-Sorio, Beatrix, Narr, Katherine, Lavretsky, Helen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8563624/ https://www.ncbi.nlm.nih.gov/pubmed/34744829 http://dx.doi.org/10.3389/fpsyt.2021.738494 |
Ejemplares similares
-
Regional White Matter Integrity Predicts Treatment Response to Escitalopram and Memantine in Geriatric Depression: A Pilot Study
por: Krause-Sorio, Beatrix, et al.
Publicado: (2020) -
Default mode network connectivity and treatment response in geriatric depression
por: Kilpatrick, Lisa A., et al.
Publicado: (2022) -
Gut Microbiome Diversity and Abundance Correlate with Gray Matter Volume (GMV) in Older Adults with Depression
por: Lee, Sungeun Melanie, et al.
Publicado: (2022) -
Yoga Prevents Gray Matter Atrophy in Women at Risk for Alzheimer’s Disease: A Randomized Controlled Trial
por: Krause-Sorio, Beatrix, et al.
Publicado: (2022) -
Impact of Yoga Versus Memory Enhancement Training on Hippocampal Connectivity in Older Women at Risk for Alzheimer’s Disease
por: Kilpatrick, Lisa A., et al.
Publicado: (2023)