Cargando…
Machine learning classifier to identify clinical and radiological features relevant to disability progression in multiple sclerosis
OBJECTIVES: To evaluate the accuracy of a data-driven approach, such as machine learning classification, in predicting disability progression in MS. METHODS: We analyzed structural brain images of 163 subjects diagnosed with MS acquired at two different sites. Participants were followed up for 2–6 y...
Autores principales: | Tommasin, Silvia, Cocozza, Sirio, Taloni, Alessandro, Giannì, Costanza, Petsas, Nikolaos, Pontillo, Giuseppe, Petracca, Maria, Ruggieri, Serena, De Giglio, Laura, Pozzilli, Carlo, Brunetti, Arturo, Pantano, Patrizia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8563671/ https://www.ncbi.nlm.nih.gov/pubmed/33970338 http://dx.doi.org/10.1007/s00415-021-10605-7 |
Ejemplares similares
-
Evaluation of Disability Progression in Multiple Sclerosis via Magnetic-Resonance-Based Deep Learning Techniques
por: Taloni, Alessandro, et al.
Publicado: (2022) -
A matter of atrophy: differential impact of brain and spine damage on disability worsening in multiple sclerosis
por: Ruggieri, Serena, et al.
Publicado: (2021) -
A Comprehensive Approach to Disentangle the Effect of Cerebellar Damage on Physical Disability in Multiple Sclerosis
por: Ruggieri, Serena, et al.
Publicado: (2020) -
Increased Within-Network Functional Connectivity May Predict NEDA Status in Fingolimod-Treated MS Patients
por: Piervincenzi, Claudia, et al.
Publicado: (2021) -
The Role of fMRI in the Assessment of Neuroplasticity in MS: A Systematic Review
por: Laura, De Giglio, et al.
Publicado: (2018)