Cargando…
Epidemiology and Regional Predictors of COVID-19 Clusters: A Bayesian Spatial Analysis Through a Nationwide Contact Tracing Data
Purpose: Revealing the clustering risks of COVID-19 and prediction is essential for effective quarantine policies, since clusters can lead to rapid transmission and high mortality in a short period. This study aimed to present which regional and social characteristics make COVID-19 cluster with high...
Autores principales: | Hong, Kwan, Yum, Sujin, Kim, Jeehyun, Yoo, Daesung, Chun, Byung Chul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8563697/ https://www.ncbi.nlm.nih.gov/pubmed/34746188 http://dx.doi.org/10.3389/fmed.2021.753428 |
Ejemplares similares
-
The Serial Interval of COVID-19 in Korea: 1,567 Pairs of Symptomatic Cases from Contact Tracing
por: Hong, Kwan, et al.
Publicado: (2020) -
Health behaviors and the risk of COVID-19 incidence: A Bayesian hierarchical spatial analysis
por: Kim, Jeehyun, et al.
Publicado: (2023) -
Spatiotemporal clusters of Kawasaki disease in South Korea from 2008 to 2017: A municipal-level ecological study
por: Kim, Jeehyun, et al.
Publicado: (2023) -
1781. Spatial Epidemiology of Pneumonia Mortality in Korea: Regional Clustering and Bayesian Spatial Regression Analysis for its Determinants
por: Kisiju, Trishna, et al.
Publicado: (2023) -
Trends in Viral Respiratory Infections During COVID-19 Pandemic, South Korea
por: Yum, Sujin, et al.
Publicado: (2021)