Cargando…
Tumor relevant protein functional interactions identified using bipartite graph analyses
An increased surge of -omics data for the diseases such as cancer allows for deriving insights into the affiliated protein interactions. We used bipartite network principles to build protein functional associations of the differentially regulated genes in 18 cancer types. This approach allowed us to...
Autores principales: | Venkatraman, Divya Lakshmi, Pulimamidi, Deepshika, Shukla, Harsh G., Hegde, Shubhada R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8563864/ https://www.ncbi.nlm.nih.gov/pubmed/34728699 http://dx.doi.org/10.1038/s41598-021-00879-2 |
Ejemplares similares
-
Predicting lncRNA-protein interactions with bipartite graph embedding and deep graph neural networks
por: Ma, Yuzhou, et al.
Publicado: (2023) -
Vertex Deletion into Bipartite Permutation Graphs
por: Bożyk, Łukasz, et al.
Publicado: (2022) -
Modeling the ribosome as a bipartite graph
por: Calvet, Laurie E.
Publicado: (2022) -
Bipartite Graphs for Visualization Analysis of Microbiome Data
por: Sedlar, Karel, et al.
Publicado: (2016) -
Characterization of peptide-protein relationships in protein ambiguity groups via bipartite graphs
por: Schork, Karin, et al.
Publicado: (2022)