Cargando…
Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images
Machine-assisted pathological recognition has been focused on supervised learning (SL) that suffers from a significant annotation bottleneck. We propose a semi-supervised learning (SSL) method based on the mean teacher architecture using 13,111 whole slide images of colorectal cancer from 8803 subje...
Autores principales: | Yu, Gang, Sun, Kai, Xu, Chao, Shi, Xing-Hua, Wu, Chong, Xie, Ting, Meng, Run-Qi, Meng, Xiang-He, Wang, Kuan-Song, Xiao, Hong-Mei, Deng, Hong-Wen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8563931/ https://www.ncbi.nlm.nih.gov/pubmed/34728629 http://dx.doi.org/10.1038/s41467-021-26643-8 |
Ejemplares similares
-
Graph-Based Self-Training for Semi-Supervised Deep Similarity Learning
por: Wang, Yifan, et al.
Publicado: (2023) -
Instance segmentation using semi-supervised learning for fire recognition
por: Sun, Guangmin, et al.
Publicado: (2022) -
An Impartial Semi-Supervised Learning Strategy for Imbalanced Classification on VHR Images
por: Sun, Fei, et al.
Publicado: (2020) -
Robust Semi-Supervised Traffic Sign Recognition via Self-Training and Weakly-Supervised Learning
por: Nartey, Obed Tettey, et al.
Publicado: (2020) -
Deep Low-Density Separation for Semi-supervised Classification
por: Burkhart, Michael C., et al.
Publicado: (2020)