Cargando…
Computational methods for protein localization prediction
The accurate annotation of protein localization is crucial in understanding protein function in tandem with a broad range of applications such as pathological analysis and drug design. Since most proteins do not have experimentally-determined localization information, the computational prediction of...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8564054/ https://www.ncbi.nlm.nih.gov/pubmed/34765098 http://dx.doi.org/10.1016/j.csbj.2021.10.023 |
Sumario: | The accurate annotation of protein localization is crucial in understanding protein function in tandem with a broad range of applications such as pathological analysis and drug design. Since most proteins do not have experimentally-determined localization information, the computational prediction of protein localization has been an active research area for more than two decades. In particular, recent machine-learning advancements have fueled the development of new methods in protein localization prediction. In this review paper, we first categorize the main features and algorithms used for protein localization prediction. Then, we summarize a list of protein localization prediction tools in terms of their coverage, characteristics, and accessibility to help users find suitable tools based on their needs. Next, we evaluate some of these tools on a benchmark dataset. Finally, we provide an outlook on the future exploration of protein localization methods. |
---|