Cargando…
Programmable patterned MoS(2) film by direct laser writing for health-related signals monitoring
The two-dimensional (2D) transition metal dichalcogenides (TMDs) are promising flexible electronic materials for strategic flexible information devices. Large-area and high-quality patterned materials were usually required by flexible electronics due to the limitation from the process of manufacturi...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8564106/ https://www.ncbi.nlm.nih.gov/pubmed/34755102 http://dx.doi.org/10.1016/j.isci.2021.103313 |
Sumario: | The two-dimensional (2D) transition metal dichalcogenides (TMDs) are promising flexible electronic materials for strategic flexible information devices. Large-area and high-quality patterned materials were usually required by flexible electronics due to the limitation from the process of manufacturing and integration. However, the synthesis of large-area patterned 2D TMDs with high quality is difficult. Here, an efficient and powerful pulsed laser has been developed to synthesize wafer-scale MoS(2). The flexible strain sensor was fabricated using MoS(2) and showed high performance of low detection limit (0.09%), high gauge factor (1,118), and high stability (1,000 cycles). Besides, we demonstrated its applications in real-time monitoring of health-related physiological signals such as radial artery pressure, respiratory rate, and vocal cord vibration. Our findings suggest that the laser-assisted method is effective and capable of synthesizing wafer-scale 2D TMDs, which opens new opportunities for the next flexible electronic devices and wearable health monitoring. |
---|