Cargando…

The cerebellum and its network: Disrupted static and dynamic functional connectivity patterns and cognitive impairment in multiple sclerosis

BACKGROUND: The impact of cerebellar damage and (dys)function on cognition remains understudied in multiple sclerosis. OBJECTIVE: To assess the cognitive relevance of cerebellar structural damage and functional connectivity (FC) in relapsing-remitting multiple sclerosis (RRMS) and secondary progress...

Descripción completa

Detalles Bibliográficos
Autores principales: Schoonheim, Menno M, Douw, Linda, Broeders, Tommy AA, Eijlers, Anand JC, Meijer, Kim A, Geurts, Jeroen JG
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8564243/
https://www.ncbi.nlm.nih.gov/pubmed/33683158
http://dx.doi.org/10.1177/1352458521999274
Descripción
Sumario:BACKGROUND: The impact of cerebellar damage and (dys)function on cognition remains understudied in multiple sclerosis. OBJECTIVE: To assess the cognitive relevance of cerebellar structural damage and functional connectivity (FC) in relapsing-remitting multiple sclerosis (RRMS) and secondary progressive multiple sclerosis (SPMS). METHODS: This study included 149 patients with early RRMS, 81 late RRMS, 48 SPMS and 82 controls. Cerebellar cortical imaging included fractional anisotropy, grey matter volume and resting-state functional magnetic resonance imaging (MRI). Cerebellar FC was assessed with literature-based resting-state networks, using static connectivity (that is, conventional correlations), and dynamic connectivity (that is, fluctuations in FC strength). Measures were compared between groups and related to disability and cognition. RESULTS: Cognitive impairment (CI) and cerebellar damage were worst in SPMS. Only SPMS showed cerebellar connectivity changes, compared to early RRMS and controls. Lower static FC was seen in fronto-parietal and default-mode networks. Higher dynamic FC was seen in dorsal and ventral attention, default-mode and deep grey matter networks. Cerebellar atrophy and higher dynamic FC together explained 32% of disability and 24% of cognitive variance. Higher dynamic FC was related to working and verbal memory and to information processing speed. CONCLUSION: Cerebellar damage and cerebellar connectivity changes were most prominent in SPMS and related to worse CI.