Cargando…
Probiotic Characteristics of Lactobacillus brevis KT38-3 Isolated from an Artisanal Tulum Cheese
Probiotics are living microorganisms that, when administered in adequate amounts, provide a health benefit to the host and are considered safe. Most probiotic strains that are beneficial to human health are included in the “Lactic acid bacteria” (LAB) group. The positive effects of probiotic bacteri...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society for Food Science of Animal Resources
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8564325/ https://www.ncbi.nlm.nih.gov/pubmed/34796324 http://dx.doi.org/10.5851/kosfa.2021.e49 |
_version_ | 1784593593140248576 |
---|---|
author | Hacıoglu, Seda Kunduhoglu, Buket |
author_facet | Hacıoglu, Seda Kunduhoglu, Buket |
author_sort | Hacıoglu, Seda |
collection | PubMed |
description | Probiotics are living microorganisms that, when administered in adequate amounts, provide a health benefit to the host and are considered safe. Most probiotic strains that are beneficial to human health are included in the “Lactic acid bacteria” (LAB) group. The positive effects of probiotic bacteria on the host’s health are species-specific and even strain-specific. Therefore, evaluating the probiotic potential of both wild and novel strains is essential. In this study, the probiotic characteristics of Lactobacillus brevis KT38-3 were determined. The strain identification was achieved by 16S rRNA sequencing. API-ZYM test kits were used to determine the enzymatic capacity of the strain. L. brevis KT38-3 was able to survive in conditions with a broad pH range (pH 2–7), range of bile salts (0.3%–1%) and conditions that simulated gastric juice and intestinal juice. The percentage of autoaggregation (59.4%), coaggregation with E. coli O157:H7 (37.4%) and hydrophobicity were determined to be 51.1%, 47.4%, and 52.7%, respectively. L. brevis KT38-3 produced β-galactosidase enzymes and was able ferment lactose. In addition, this strain was capable of producing antimicrobial peptides against the bacteria tested, including methicillin and/or vancomycin-resistant bacteria. The cell-free supernatants of the strain had high antioxidant activities (DPPH: 54.9% and ABTS: 48.7%). Therefore, considering these many essential in vitro probiotic properties, L. brevis KT38-3 has the potential to be used as a probiotic supplement. Supporting these findings with in vivo experiments to evaluate the potential health benefits will be the subject of our future work. |
format | Online Article Text |
id | pubmed-8564325 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Korean Society for Food Science of Animal Resources |
record_format | MEDLINE/PubMed |
spelling | pubmed-85643252021-11-17 Probiotic Characteristics of Lactobacillus brevis KT38-3 Isolated from an Artisanal Tulum Cheese Hacıoglu, Seda Kunduhoglu, Buket Food Sci Anim Resour Article Probiotics are living microorganisms that, when administered in adequate amounts, provide a health benefit to the host and are considered safe. Most probiotic strains that are beneficial to human health are included in the “Lactic acid bacteria” (LAB) group. The positive effects of probiotic bacteria on the host’s health are species-specific and even strain-specific. Therefore, evaluating the probiotic potential of both wild and novel strains is essential. In this study, the probiotic characteristics of Lactobacillus brevis KT38-3 were determined. The strain identification was achieved by 16S rRNA sequencing. API-ZYM test kits were used to determine the enzymatic capacity of the strain. L. brevis KT38-3 was able to survive in conditions with a broad pH range (pH 2–7), range of bile salts (0.3%–1%) and conditions that simulated gastric juice and intestinal juice. The percentage of autoaggregation (59.4%), coaggregation with E. coli O157:H7 (37.4%) and hydrophobicity were determined to be 51.1%, 47.4%, and 52.7%, respectively. L. brevis KT38-3 produced β-galactosidase enzymes and was able ferment lactose. In addition, this strain was capable of producing antimicrobial peptides against the bacteria tested, including methicillin and/or vancomycin-resistant bacteria. The cell-free supernatants of the strain had high antioxidant activities (DPPH: 54.9% and ABTS: 48.7%). Therefore, considering these many essential in vitro probiotic properties, L. brevis KT38-3 has the potential to be used as a probiotic supplement. Supporting these findings with in vivo experiments to evaluate the potential health benefits will be the subject of our future work. Korean Society for Food Science of Animal Resources 2021-11 2021-11-01 /pmc/articles/PMC8564325/ /pubmed/34796324 http://dx.doi.org/10.5851/kosfa.2021.e49 Text en © Korean Society for Food Science of Animal Resources https://creativecommons.org/licenses/by-nc/3.0/This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Article Hacıoglu, Seda Kunduhoglu, Buket Probiotic Characteristics of Lactobacillus brevis KT38-3 Isolated from an Artisanal Tulum Cheese |
title | Probiotic Characteristics of Lactobacillus brevis
KT38-3 Isolated from an Artisanal Tulum Cheese |
title_full | Probiotic Characteristics of Lactobacillus brevis
KT38-3 Isolated from an Artisanal Tulum Cheese |
title_fullStr | Probiotic Characteristics of Lactobacillus brevis
KT38-3 Isolated from an Artisanal Tulum Cheese |
title_full_unstemmed | Probiotic Characteristics of Lactobacillus brevis
KT38-3 Isolated from an Artisanal Tulum Cheese |
title_short | Probiotic Characteristics of Lactobacillus brevis
KT38-3 Isolated from an Artisanal Tulum Cheese |
title_sort | probiotic characteristics of lactobacillus brevis
kt38-3 isolated from an artisanal tulum cheese |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8564325/ https://www.ncbi.nlm.nih.gov/pubmed/34796324 http://dx.doi.org/10.5851/kosfa.2021.e49 |
work_keys_str_mv | AT hacıogluseda probioticcharacteristicsoflactobacillusbreviskt383isolatedfromanartisanaltulumcheese AT kunduhoglubuket probioticcharacteristicsoflactobacillusbreviskt383isolatedfromanartisanaltulumcheese |