Cargando…

Liquid‐Based Multijunction Molecular Solar Thermal Energy Collection Device

Photoswitchable molecules‐based solar thermal energy storage system (MOST) can potentially be a route to store solar energy for future use. Herein, the use of a multijunction MOST device that combines various photoswitches with different onsets of absorption to push the efficiency limit on solar ene...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Zhihang, Moïse, Henry, Cacciarini, Martina, Nielsen, Mogens Brøndsted, Morikawa, Masa‐aki, Kimizuka, Nobuo, Moth‐Poulsen, Kasper
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8564455/
https://www.ncbi.nlm.nih.gov/pubmed/34581516
http://dx.doi.org/10.1002/advs.202103060
Descripción
Sumario:Photoswitchable molecules‐based solar thermal energy storage system (MOST) can potentially be a route to store solar energy for future use. Herein, the use of a multijunction MOST device that combines various photoswitches with different onsets of absorption to push the efficiency limit on solar energy collection and storage is explored. With a parametric model calculation, it is shown that the efficiency limit of MOST concept can be improved from 13.0% to 18.2% with a double‐junction system and to 20.5% with a triple‐junction system containing ideal, red‐shifted MOST candidates. As a proof‐of‐concept, the use of a three‐layered MOST device is experimentally demonstrated. The device uses different photoswitches including a norbornadiene derivative, a dihydroazulene derivative, and an azobenzene derivative in liquid state with different MOSTproperties, to increase the energy capture and storage behavior. This conceptional device introduces a new way of thinking and designing optimal molecular candidates for MOST, as much improvement can be made by tailoring molecules to efficiently store solar energy at specific wavelengths.