Cargando…

Bounded rational response equilibria in human sensorimotor interactions

The Nash equilibrium is one of the most central solution concepts to study strategic interactions between multiple players and has recently also been shown to capture sensorimotor interactions between players that are haptically coupled. While previous studies in behavioural economics have shown tha...

Descripción completa

Detalles Bibliográficos
Autores principales: Lindig-León, Cecilia, Schmid, Gerrit, Braun, Daniel A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8564607/
https://www.ncbi.nlm.nih.gov/pubmed/34727714
http://dx.doi.org/10.1098/rspb.2021.2094
Descripción
Sumario:The Nash equilibrium is one of the most central solution concepts to study strategic interactions between multiple players and has recently also been shown to capture sensorimotor interactions between players that are haptically coupled. While previous studies in behavioural economics have shown that systematic deviations from Nash equilibria in economic decision-making can be explained by the more general quantal response equilibria, such deviations have not been reported for the sensorimotor domain. Here we investigate haptically coupled dyads across three different sensorimotor games corresponding to the classic symmetric and asymmetric Prisoner's Dilemma, where the quantal response equilibrium predicts characteristic shifts across the three games, although the Nash equilibrium stays the same. We find that subjects exhibit the predicted deviations from the Nash solution. Furthermore, we show that taking into account subjects' priors for the games, we arrive at a more accurate description of bounded rational response equilibria that can be regarded as a quantal response equilibrium with non-uniform prior. Our results suggest that bounded rational response equilibria provide a general tool to explain sensorimotor interactions that include the Nash equilibrium as a special case in the absence of information processing limitations.