Cargando…
The supernumerary B chromosome of maize: drive and genomic conflict
The supernumerary B chromosome of maize is dispensable, containing no vital genes, and thus is variable in number and presence in lines of maize. In order to be maintained in populations, it has a drive mechanism consisting of nondisjunction at the pollen mitosis that produces the two sperm cells, a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8564619/ https://www.ncbi.nlm.nih.gov/pubmed/34727722 http://dx.doi.org/10.1098/rsob.210197 |
Sumario: | The supernumerary B chromosome of maize is dispensable, containing no vital genes, and thus is variable in number and presence in lines of maize. In order to be maintained in populations, it has a drive mechanism consisting of nondisjunction at the pollen mitosis that produces the two sperm cells, and then the sperm with the two B chromosomes has a preference for fertilizing the egg as opposed to the central cell in the process of double fertilization. The sequence of the B chromosome coupled with B chromosomal aberrations has localized features involved with nondisjunction and preferential fertilization, which are present at the centromeric region. The predicted genes from the sequence have paralogues dispersed across all A chromosomes and have widely different divergence times suggesting that they have transposed to the B chromosome over evolutionary time followed by degradation or have been co-opted for the selfish functions of the supernumerary chromosome. |
---|