Cargando…
Ultra-small PbS nanocrystals as sensitizers for red-to-blue triplet-fusion upconversion
Photon upconversion is a strategy to generate high-energy excitations from low-energy photon input, enabling advanced architectures for imaging and photochemistry. Here, we show that ultra-small PbS nanocrystals can sensitize red-to-blue triplet-fusion upconversion with a large anti-Stokes shift (ΔE...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8565365/ https://www.ncbi.nlm.nih.gov/pubmed/34760195 http://dx.doi.org/10.1039/d1sc04330g |
_version_ | 1784593810365349888 |
---|---|
author | Imperiale, Christian J. Green, Philippe B. Hasham, Minhal Wilson, Mark W. B. |
author_facet | Imperiale, Christian J. Green, Philippe B. Hasham, Minhal Wilson, Mark W. B. |
author_sort | Imperiale, Christian J. |
collection | PubMed |
description | Photon upconversion is a strategy to generate high-energy excitations from low-energy photon input, enabling advanced architectures for imaging and photochemistry. Here, we show that ultra-small PbS nanocrystals can sensitize red-to-blue triplet-fusion upconversion with a large anti-Stokes shift (ΔE = 1.04 eV), and achieve max-efficiency upconversion at near-solar fluences (I(th) = 220 mW cm(−2)) despite endothermic triplet sensitization. This system facilitates the photo-initiated polymerization of methyl methacrylate using only long-wavelength light (λ(exc): 637 nm); a demonstration of nanocrystal-sensitized upconversion photochemistry. Time-resolved spectroscopy and kinetic modelling clarify key loss channels, highlighting the benefit of long-lifetime nanocrystal sensitizers, but revealing that many (48%) excitons that reach triplet-extracting carboxyphenylanthracene ligands decay before they can transfer to free-floating acceptors—emphasizing the need to address the reduced lifetimes that we determine for molecular triplets near the nanocrystal surface. Finally, we find that the inferred thermodynamics of triplet sensitization from these ultra-small PbS quantum dots are surprisingly favourable—completing an advantageous suite of properties for upconversion photochemistry—and do not vary significantly across the ensemble, which indicates minimal effects from nanocrystal heterogeneity. Together, our demonstration and study of red-to-blue upconversion using ultra-small PbS nanocrystals in a quasi-equilibrium, mildly endothermic sensitization scheme offer design rules to advance implementations of triplet fusion, especially where large anti-Stokes wavelength shifts are sought. |
format | Online Article Text |
id | pubmed-8565365 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-85653652021-11-09 Ultra-small PbS nanocrystals as sensitizers for red-to-blue triplet-fusion upconversion Imperiale, Christian J. Green, Philippe B. Hasham, Minhal Wilson, Mark W. B. Chem Sci Chemistry Photon upconversion is a strategy to generate high-energy excitations from low-energy photon input, enabling advanced architectures for imaging and photochemistry. Here, we show that ultra-small PbS nanocrystals can sensitize red-to-blue triplet-fusion upconversion with a large anti-Stokes shift (ΔE = 1.04 eV), and achieve max-efficiency upconversion at near-solar fluences (I(th) = 220 mW cm(−2)) despite endothermic triplet sensitization. This system facilitates the photo-initiated polymerization of methyl methacrylate using only long-wavelength light (λ(exc): 637 nm); a demonstration of nanocrystal-sensitized upconversion photochemistry. Time-resolved spectroscopy and kinetic modelling clarify key loss channels, highlighting the benefit of long-lifetime nanocrystal sensitizers, but revealing that many (48%) excitons that reach triplet-extracting carboxyphenylanthracene ligands decay before they can transfer to free-floating acceptors—emphasizing the need to address the reduced lifetimes that we determine for molecular triplets near the nanocrystal surface. Finally, we find that the inferred thermodynamics of triplet sensitization from these ultra-small PbS quantum dots are surprisingly favourable—completing an advantageous suite of properties for upconversion photochemistry—and do not vary significantly across the ensemble, which indicates minimal effects from nanocrystal heterogeneity. Together, our demonstration and study of red-to-blue upconversion using ultra-small PbS nanocrystals in a quasi-equilibrium, mildly endothermic sensitization scheme offer design rules to advance implementations of triplet fusion, especially where large anti-Stokes wavelength shifts are sought. The Royal Society of Chemistry 2021-10-11 /pmc/articles/PMC8565365/ /pubmed/34760195 http://dx.doi.org/10.1039/d1sc04330g Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Imperiale, Christian J. Green, Philippe B. Hasham, Minhal Wilson, Mark W. B. Ultra-small PbS nanocrystals as sensitizers for red-to-blue triplet-fusion upconversion |
title | Ultra-small PbS nanocrystals as sensitizers for red-to-blue triplet-fusion upconversion |
title_full | Ultra-small PbS nanocrystals as sensitizers for red-to-blue triplet-fusion upconversion |
title_fullStr | Ultra-small PbS nanocrystals as sensitizers for red-to-blue triplet-fusion upconversion |
title_full_unstemmed | Ultra-small PbS nanocrystals as sensitizers for red-to-blue triplet-fusion upconversion |
title_short | Ultra-small PbS nanocrystals as sensitizers for red-to-blue triplet-fusion upconversion |
title_sort | ultra-small pbs nanocrystals as sensitizers for red-to-blue triplet-fusion upconversion |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8565365/ https://www.ncbi.nlm.nih.gov/pubmed/34760195 http://dx.doi.org/10.1039/d1sc04330g |
work_keys_str_mv | AT imperialechristianj ultrasmallpbsnanocrystalsassensitizersforredtobluetripletfusionupconversion AT greenphilippeb ultrasmallpbsnanocrystalsassensitizersforredtobluetripletfusionupconversion AT hashamminhal ultrasmallpbsnanocrystalsassensitizersforredtobluetripletfusionupconversion AT wilsonmarkwb ultrasmallpbsnanocrystalsassensitizersforredtobluetripletfusionupconversion |