Cargando…
N4BP2L1 interacts with dynactin and contributes to GLUT4 trafficking and glucose uptake in adipocytes
AIMS/INTRODUCTION: It was reported previously that N4bp2l1 expression increases in 3T3‐L1 cells in a differentiation‐dependent manner and N4bp2l1 knockdown suppresses adipocyte differentiation. However, the physiological function of N4BP2L1 in adipocytes remains unknown. This study aimed to elucidat...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8565410/ https://www.ncbi.nlm.nih.gov/pubmed/34197691 http://dx.doi.org/10.1111/jdi.13623 |
_version_ | 1784593821098573824 |
---|---|
author | Watanabe, Kazuhisa Matsumoto, Ayumi Tsuda, Hidetoshi Iwamoto, Sadahiko |
author_facet | Watanabe, Kazuhisa Matsumoto, Ayumi Tsuda, Hidetoshi Iwamoto, Sadahiko |
author_sort | Watanabe, Kazuhisa |
collection | PubMed |
description | AIMS/INTRODUCTION: It was reported previously that N4bp2l1 expression increases in 3T3‐L1 cells in a differentiation‐dependent manner and N4bp2l1 knockdown suppresses adipocyte differentiation. However, the physiological function of N4BP2L1 in adipocytes remains unknown. This study aimed to elucidate the physiological mechanism of N4bp2l1 expression and the role of N4BP2L1 in the physiological function of adipocytes. MATERIALS AND METHODS: Analysis of gene expression levels of N4bp2l1 in adipose tissue during feeding in mice was conducted. Identification of transcription factors that regulate N4bp2l1 expression was conducted using a reporter assay. Investigation of N4BP2L1‐interacting proteins was carried out using immunoprecipitation. A GLUT4 translocation assay and a glucose uptake assay in 3T3‐L1 adipocytes were performed using N4bp2l1 overexpression and knockdown adenovirus. RESULTS: The results indicated that N4bp2l1 is a novel FoxO1 target gene and its expression is controlled by the insulin‐mediated regulation of FoxO1. N4BP2L1 interacts with dynactin, which binds to the microtubule motor dynein, indicating that N4BP2L1 is involved in GLUT4 trafficking and glucose uptake in 3T3‐L1 adipocytes. CONCLUSIONS: Our results suggest that N4BP2L1 is involved in adipocyte homeostasis by interacting with dynein–dynactin and affecting GLUT4‐mediated glucose uptake and the insulin signaling pathway. |
format | Online Article Text |
id | pubmed-8565410 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-85654102021-11-09 N4BP2L1 interacts with dynactin and contributes to GLUT4 trafficking and glucose uptake in adipocytes Watanabe, Kazuhisa Matsumoto, Ayumi Tsuda, Hidetoshi Iwamoto, Sadahiko J Diabetes Investig Articles AIMS/INTRODUCTION: It was reported previously that N4bp2l1 expression increases in 3T3‐L1 cells in a differentiation‐dependent manner and N4bp2l1 knockdown suppresses adipocyte differentiation. However, the physiological function of N4BP2L1 in adipocytes remains unknown. This study aimed to elucidate the physiological mechanism of N4bp2l1 expression and the role of N4BP2L1 in the physiological function of adipocytes. MATERIALS AND METHODS: Analysis of gene expression levels of N4bp2l1 in adipose tissue during feeding in mice was conducted. Identification of transcription factors that regulate N4bp2l1 expression was conducted using a reporter assay. Investigation of N4BP2L1‐interacting proteins was carried out using immunoprecipitation. A GLUT4 translocation assay and a glucose uptake assay in 3T3‐L1 adipocytes were performed using N4bp2l1 overexpression and knockdown adenovirus. RESULTS: The results indicated that N4bp2l1 is a novel FoxO1 target gene and its expression is controlled by the insulin‐mediated regulation of FoxO1. N4BP2L1 interacts with dynactin, which binds to the microtubule motor dynein, indicating that N4BP2L1 is involved in GLUT4 trafficking and glucose uptake in 3T3‐L1 adipocytes. CONCLUSIONS: Our results suggest that N4BP2L1 is involved in adipocyte homeostasis by interacting with dynein–dynactin and affecting GLUT4‐mediated glucose uptake and the insulin signaling pathway. John Wiley and Sons Inc. 2021-07-17 2021-11 /pmc/articles/PMC8565410/ /pubmed/34197691 http://dx.doi.org/10.1111/jdi.13623 Text en © 2021 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Articles Watanabe, Kazuhisa Matsumoto, Ayumi Tsuda, Hidetoshi Iwamoto, Sadahiko N4BP2L1 interacts with dynactin and contributes to GLUT4 trafficking and glucose uptake in adipocytes |
title | N4BP2L1 interacts with dynactin and contributes to GLUT4 trafficking and glucose uptake in adipocytes |
title_full | N4BP2L1 interacts with dynactin and contributes to GLUT4 trafficking and glucose uptake in adipocytes |
title_fullStr | N4BP2L1 interacts with dynactin and contributes to GLUT4 trafficking and glucose uptake in adipocytes |
title_full_unstemmed | N4BP2L1 interacts with dynactin and contributes to GLUT4 trafficking and glucose uptake in adipocytes |
title_short | N4BP2L1 interacts with dynactin and contributes to GLUT4 trafficking and glucose uptake in adipocytes |
title_sort | n4bp2l1 interacts with dynactin and contributes to glut4 trafficking and glucose uptake in adipocytes |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8565410/ https://www.ncbi.nlm.nih.gov/pubmed/34197691 http://dx.doi.org/10.1111/jdi.13623 |
work_keys_str_mv | AT watanabekazuhisa n4bp2l1interactswithdynactinandcontributestoglut4traffickingandglucoseuptakeinadipocytes AT matsumotoayumi n4bp2l1interactswithdynactinandcontributestoglut4traffickingandglucoseuptakeinadipocytes AT tsudahidetoshi n4bp2l1interactswithdynactinandcontributestoglut4traffickingandglucoseuptakeinadipocytes AT iwamotosadahiko n4bp2l1interactswithdynactinandcontributestoglut4traffickingandglucoseuptakeinadipocytes |