Cargando…
Predicting suicidal thoughts and behavior among adolescents using the risk and protective factor framework: A large-scale machine learning approach
INTRODUCTION: Addressing the problem of suicidal thoughts and behavior (STB) in adolescents requires understanding the associated risk factors. While previous research has identified individual risk and protective factors associated with many adolescent social morbidities, modern machine learning ap...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8565727/ https://www.ncbi.nlm.nih.gov/pubmed/34731169 http://dx.doi.org/10.1371/journal.pone.0258535 |
_version_ | 1784593871432318976 |
---|---|
author | Weller, Orion Sagers, Luke Hanson, Carl Barnes, Michael Snell, Quinn Tass, E. Shannon |
author_facet | Weller, Orion Sagers, Luke Hanson, Carl Barnes, Michael Snell, Quinn Tass, E. Shannon |
author_sort | Weller, Orion |
collection | PubMed |
description | INTRODUCTION: Addressing the problem of suicidal thoughts and behavior (STB) in adolescents requires understanding the associated risk factors. While previous research has identified individual risk and protective factors associated with many adolescent social morbidities, modern machine learning approaches can help identify risk and protective factors that interact (group) to provide predictive power for STB. This study aims to develop a prediction algorithm for STB among adolescents using the risk and protective factor framework and social determinants of health. METHODS: The sample population consisted of more than 179,000 high school students living in Utah and participating in the Communities That Care (CTC) Youth Survey from 2011-2017. The dataset includes responses to 300+ questions from the CTC and 8000+ demographic factors from the American Census Survey for a total of 1.2 billion values. Machine learning techniques were employed to extract the survey questions that were best able to predict answers indicative of STB, using recent work in interpretable machine learning. RESULTS: Analysis showed strong predictive power, with the ability to predict individuals with STB with 91% accuracy. After extracting the top ten questions that most affected model predictions, questions fell into four main categories: familial life, drug consumption, demographics, and peer acceptance at school. CONCLUSIONS: Modern machine learning approaches provide new methods for understanding the interaction between root causes and outcomes, such as STB. The model developed in this study showed significant improvement in predictive accuracy compared to previous research. Results indicate that certain risk and protective factors, such as adolescents being threatened or harassed through digital media or bullied at school, and exposure or involvement in serious arguments and yelling at home are the leading predictors of STB and can help narrow and reaffirm priority prevention programming and areas of focused policymaking. |
format | Online Article Text |
id | pubmed-8565727 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-85657272021-11-04 Predicting suicidal thoughts and behavior among adolescents using the risk and protective factor framework: A large-scale machine learning approach Weller, Orion Sagers, Luke Hanson, Carl Barnes, Michael Snell, Quinn Tass, E. Shannon PLoS One Research Article INTRODUCTION: Addressing the problem of suicidal thoughts and behavior (STB) in adolescents requires understanding the associated risk factors. While previous research has identified individual risk and protective factors associated with many adolescent social morbidities, modern machine learning approaches can help identify risk and protective factors that interact (group) to provide predictive power for STB. This study aims to develop a prediction algorithm for STB among adolescents using the risk and protective factor framework and social determinants of health. METHODS: The sample population consisted of more than 179,000 high school students living in Utah and participating in the Communities That Care (CTC) Youth Survey from 2011-2017. The dataset includes responses to 300+ questions from the CTC and 8000+ demographic factors from the American Census Survey for a total of 1.2 billion values. Machine learning techniques were employed to extract the survey questions that were best able to predict answers indicative of STB, using recent work in interpretable machine learning. RESULTS: Analysis showed strong predictive power, with the ability to predict individuals with STB with 91% accuracy. After extracting the top ten questions that most affected model predictions, questions fell into four main categories: familial life, drug consumption, demographics, and peer acceptance at school. CONCLUSIONS: Modern machine learning approaches provide new methods for understanding the interaction between root causes and outcomes, such as STB. The model developed in this study showed significant improvement in predictive accuracy compared to previous research. Results indicate that certain risk and protective factors, such as adolescents being threatened or harassed through digital media or bullied at school, and exposure or involvement in serious arguments and yelling at home are the leading predictors of STB and can help narrow and reaffirm priority prevention programming and areas of focused policymaking. Public Library of Science 2021-11-03 /pmc/articles/PMC8565727/ /pubmed/34731169 http://dx.doi.org/10.1371/journal.pone.0258535 Text en © 2021 Weller et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Weller, Orion Sagers, Luke Hanson, Carl Barnes, Michael Snell, Quinn Tass, E. Shannon Predicting suicidal thoughts and behavior among adolescents using the risk and protective factor framework: A large-scale machine learning approach |
title | Predicting suicidal thoughts and behavior among adolescents using the risk and protective factor framework: A large-scale machine learning approach |
title_full | Predicting suicidal thoughts and behavior among adolescents using the risk and protective factor framework: A large-scale machine learning approach |
title_fullStr | Predicting suicidal thoughts and behavior among adolescents using the risk and protective factor framework: A large-scale machine learning approach |
title_full_unstemmed | Predicting suicidal thoughts and behavior among adolescents using the risk and protective factor framework: A large-scale machine learning approach |
title_short | Predicting suicidal thoughts and behavior among adolescents using the risk and protective factor framework: A large-scale machine learning approach |
title_sort | predicting suicidal thoughts and behavior among adolescents using the risk and protective factor framework: a large-scale machine learning approach |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8565727/ https://www.ncbi.nlm.nih.gov/pubmed/34731169 http://dx.doi.org/10.1371/journal.pone.0258535 |
work_keys_str_mv | AT wellerorion predictingsuicidalthoughtsandbehavioramongadolescentsusingtheriskandprotectivefactorframeworkalargescalemachinelearningapproach AT sagersluke predictingsuicidalthoughtsandbehavioramongadolescentsusingtheriskandprotectivefactorframeworkalargescalemachinelearningapproach AT hansoncarl predictingsuicidalthoughtsandbehavioramongadolescentsusingtheriskandprotectivefactorframeworkalargescalemachinelearningapproach AT barnesmichael predictingsuicidalthoughtsandbehavioramongadolescentsusingtheriskandprotectivefactorframeworkalargescalemachinelearningapproach AT snellquinn predictingsuicidalthoughtsandbehavioramongadolescentsusingtheriskandprotectivefactorframeworkalargescalemachinelearningapproach AT tasseshannon predictingsuicidalthoughtsandbehavioramongadolescentsusingtheriskandprotectivefactorframeworkalargescalemachinelearningapproach |