Cargando…
Urine-Derived Stem Cells Express 571 Neuromuscular Disorders Causing Genes, Making Them a Potential in vitro Model for Rare Genetic Diseases
Background: Neuromuscular disorders (NMDs) are a heterogeneous group of genetic diseases, caused by mutations in genes involved in spinal cord, peripheral nerve, neuromuscular junction, and muscle functions. To advance the knowledge of the pathological mechanisms underlying NMDs and to eventually id...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8565768/ https://www.ncbi.nlm.nih.gov/pubmed/34744760 http://dx.doi.org/10.3389/fphys.2021.716471 |
_version_ | 1784593881246990336 |
---|---|
author | Falzarano, Maria Sofia Rossi, Rachele Grilli, Andrea Fang, Mingyan Osman, Hana Sabatelli, Patrizia Antoniel, Manuela Lu, Zhiyuan Li, Wenyan Selvatici, Rita Al-Khalili, Cristina Gualandi, Francesca Bicciato, Silvio Torelli, Silvia Ferlini, Alessandra |
author_facet | Falzarano, Maria Sofia Rossi, Rachele Grilli, Andrea Fang, Mingyan Osman, Hana Sabatelli, Patrizia Antoniel, Manuela Lu, Zhiyuan Li, Wenyan Selvatici, Rita Al-Khalili, Cristina Gualandi, Francesca Bicciato, Silvio Torelli, Silvia Ferlini, Alessandra |
author_sort | Falzarano, Maria Sofia |
collection | PubMed |
description | Background: Neuromuscular disorders (NMDs) are a heterogeneous group of genetic diseases, caused by mutations in genes involved in spinal cord, peripheral nerve, neuromuscular junction, and muscle functions. To advance the knowledge of the pathological mechanisms underlying NMDs and to eventually identify new potential drugs paving the way for personalized medicine, limitations regarding the availability of neuromuscular disease-related biological samples, rarely accessible from patients, are a major challenge. Aim: We characterized urinary stem cells (USCs) by in-depth transcriptome and protein profiling to evaluate whether this easily accessible source of patient-derived cells is suitable to study neuromuscular genetic diseases, focusing especially on those currently involved in clinical trials. Methods: The global transcriptomics of either native or MyoD transformed USCs obtained from control individuals was performed by RNA-seq. The expression of 610 genes belonging to 16 groups of disorders (http://www.musclegenetable.fr/) whose mutations cause neuromuscular diseases, was investigated on the RNA-seq output. In addition, protein expression of 11 genes related to NMDs including COL6A, EMD, LMNA, SMN, UBA1, DYNC1H1, SOD1, C9orf72, DYSF, DAG1, and HTT was analyzed in native USCs by immunofluorescence and/or Western blot (WB). Results: RNA-seq profile of control USCs shows that 571 out of 610 genes known to be involved in NMDs, are expressed in USCs. Interestingly, the expression levels of the majority of NMD genes remain unmodified following USCs MyoD transformation. Most genes involved in the pathogenesis of all 16 groups of NMDs are well represented except for channelopathies and malignant hyperthermia related genes. All tested proteins showed high expression values, suggesting consistency between transcription and protein representation in USCs. Conclusion: Our data suggest that USCs are human cells, obtainable by non-invasive means, which might be used as a patient-specific cell model to study neuromuscular disease-causing genes and that they can be likely adopted for a variety of in vitro functional studies such as mutation characterization, pathway identification, and drug screening. |
format | Online Article Text |
id | pubmed-8565768 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-85657682021-11-04 Urine-Derived Stem Cells Express 571 Neuromuscular Disorders Causing Genes, Making Them a Potential in vitro Model for Rare Genetic Diseases Falzarano, Maria Sofia Rossi, Rachele Grilli, Andrea Fang, Mingyan Osman, Hana Sabatelli, Patrizia Antoniel, Manuela Lu, Zhiyuan Li, Wenyan Selvatici, Rita Al-Khalili, Cristina Gualandi, Francesca Bicciato, Silvio Torelli, Silvia Ferlini, Alessandra Front Physiol Physiology Background: Neuromuscular disorders (NMDs) are a heterogeneous group of genetic diseases, caused by mutations in genes involved in spinal cord, peripheral nerve, neuromuscular junction, and muscle functions. To advance the knowledge of the pathological mechanisms underlying NMDs and to eventually identify new potential drugs paving the way for personalized medicine, limitations regarding the availability of neuromuscular disease-related biological samples, rarely accessible from patients, are a major challenge. Aim: We characterized urinary stem cells (USCs) by in-depth transcriptome and protein profiling to evaluate whether this easily accessible source of patient-derived cells is suitable to study neuromuscular genetic diseases, focusing especially on those currently involved in clinical trials. Methods: The global transcriptomics of either native or MyoD transformed USCs obtained from control individuals was performed by RNA-seq. The expression of 610 genes belonging to 16 groups of disorders (http://www.musclegenetable.fr/) whose mutations cause neuromuscular diseases, was investigated on the RNA-seq output. In addition, protein expression of 11 genes related to NMDs including COL6A, EMD, LMNA, SMN, UBA1, DYNC1H1, SOD1, C9orf72, DYSF, DAG1, and HTT was analyzed in native USCs by immunofluorescence and/or Western blot (WB). Results: RNA-seq profile of control USCs shows that 571 out of 610 genes known to be involved in NMDs, are expressed in USCs. Interestingly, the expression levels of the majority of NMD genes remain unmodified following USCs MyoD transformation. Most genes involved in the pathogenesis of all 16 groups of NMDs are well represented except for channelopathies and malignant hyperthermia related genes. All tested proteins showed high expression values, suggesting consistency between transcription and protein representation in USCs. Conclusion: Our data suggest that USCs are human cells, obtainable by non-invasive means, which might be used as a patient-specific cell model to study neuromuscular disease-causing genes and that they can be likely adopted for a variety of in vitro functional studies such as mutation characterization, pathway identification, and drug screening. Frontiers Media S.A. 2021-10-20 /pmc/articles/PMC8565768/ /pubmed/34744760 http://dx.doi.org/10.3389/fphys.2021.716471 Text en Copyright © 2021 Falzarano, Rossi, Grilli, Fang, Osman, Sabatelli, Antoniel, Lu, Li, Selvatici, Al-Khalili, Gualandi, Bicciato, Torelli and Ferlini. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Physiology Falzarano, Maria Sofia Rossi, Rachele Grilli, Andrea Fang, Mingyan Osman, Hana Sabatelli, Patrizia Antoniel, Manuela Lu, Zhiyuan Li, Wenyan Selvatici, Rita Al-Khalili, Cristina Gualandi, Francesca Bicciato, Silvio Torelli, Silvia Ferlini, Alessandra Urine-Derived Stem Cells Express 571 Neuromuscular Disorders Causing Genes, Making Them a Potential in vitro Model for Rare Genetic Diseases |
title | Urine-Derived Stem Cells Express 571 Neuromuscular Disorders Causing Genes, Making Them a Potential in vitro Model for Rare Genetic Diseases |
title_full | Urine-Derived Stem Cells Express 571 Neuromuscular Disorders Causing Genes, Making Them a Potential in vitro Model for Rare Genetic Diseases |
title_fullStr | Urine-Derived Stem Cells Express 571 Neuromuscular Disorders Causing Genes, Making Them a Potential in vitro Model for Rare Genetic Diseases |
title_full_unstemmed | Urine-Derived Stem Cells Express 571 Neuromuscular Disorders Causing Genes, Making Them a Potential in vitro Model for Rare Genetic Diseases |
title_short | Urine-Derived Stem Cells Express 571 Neuromuscular Disorders Causing Genes, Making Them a Potential in vitro Model for Rare Genetic Diseases |
title_sort | urine-derived stem cells express 571 neuromuscular disorders causing genes, making them a potential in vitro model for rare genetic diseases |
topic | Physiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8565768/ https://www.ncbi.nlm.nih.gov/pubmed/34744760 http://dx.doi.org/10.3389/fphys.2021.716471 |
work_keys_str_mv | AT falzaranomariasofia urinederivedstemcellsexpress571neuromusculardisorderscausinggenesmakingthemapotentialinvitromodelforraregeneticdiseases AT rossirachele urinederivedstemcellsexpress571neuromusculardisorderscausinggenesmakingthemapotentialinvitromodelforraregeneticdiseases AT grilliandrea urinederivedstemcellsexpress571neuromusculardisorderscausinggenesmakingthemapotentialinvitromodelforraregeneticdiseases AT fangmingyan urinederivedstemcellsexpress571neuromusculardisorderscausinggenesmakingthemapotentialinvitromodelforraregeneticdiseases AT osmanhana urinederivedstemcellsexpress571neuromusculardisorderscausinggenesmakingthemapotentialinvitromodelforraregeneticdiseases AT sabatellipatrizia urinederivedstemcellsexpress571neuromusculardisorderscausinggenesmakingthemapotentialinvitromodelforraregeneticdiseases AT antonielmanuela urinederivedstemcellsexpress571neuromusculardisorderscausinggenesmakingthemapotentialinvitromodelforraregeneticdiseases AT luzhiyuan urinederivedstemcellsexpress571neuromusculardisorderscausinggenesmakingthemapotentialinvitromodelforraregeneticdiseases AT liwenyan urinederivedstemcellsexpress571neuromusculardisorderscausinggenesmakingthemapotentialinvitromodelforraregeneticdiseases AT selvaticirita urinederivedstemcellsexpress571neuromusculardisorderscausinggenesmakingthemapotentialinvitromodelforraregeneticdiseases AT alkhalilicristina urinederivedstemcellsexpress571neuromusculardisorderscausinggenesmakingthemapotentialinvitromodelforraregeneticdiseases AT gualandifrancesca urinederivedstemcellsexpress571neuromusculardisorderscausinggenesmakingthemapotentialinvitromodelforraregeneticdiseases AT bicciatosilvio urinederivedstemcellsexpress571neuromusculardisorderscausinggenesmakingthemapotentialinvitromodelforraregeneticdiseases AT torellisilvia urinederivedstemcellsexpress571neuromusculardisorderscausinggenesmakingthemapotentialinvitromodelforraregeneticdiseases AT ferlinialessandra urinederivedstemcellsexpress571neuromusculardisorderscausinggenesmakingthemapotentialinvitromodelforraregeneticdiseases |