Cargando…
Multi-task vision transformer using low-level chest X-ray feature corpus for COVID-19 diagnosis and severity quantification
Developing a robust algorithm to diagnose and quantify the severity of the novel coronavirus disease 2019 (COVID-19) using Chest X-ray (CXR) requires a large number of well-curated COVID-19 datasets, which is difficult to collect under the global COVID-19 pandemic. On the other hand, CXR data with o...
Autores principales: | Park, Sangjoon, Kim, Gwanghyun, Oh, Yujin, Seo, Joon Beom, Lee, Sang Min, Kim, Jin Hwan, Moon, Sungjun, Lim, Jae-Kwang, Ye, Jong Chul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8566090/ https://www.ncbi.nlm.nih.gov/pubmed/34814058 http://dx.doi.org/10.1016/j.media.2021.102299 |
Ejemplares similares
-
Self-evolving vision transformer for chest X-ray diagnosis through knowledge distillation
por: Park, Sangjoon, et al.
Publicado: (2022) -
Explainable Vision Transformers and Radiomics for COVID-19 Detection in Chest X-rays
por: Chetoui, Mohamed, et al.
Publicado: (2022) -
CheSS: Chest X-Ray Pre-trained Model via Self-supervised Contrastive Learning
por: Cho, Kyungjin, et al.
Publicado: (2023) -
Detecting Tuberculosis-Consistent Findings in Lateral Chest X-Rays Using an Ensemble of CNNs and Vision Transformers
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022) -
Analyzing Transfer Learning of Vision Transformers for Interpreting Chest Radiography
por: Usman, Mohammad, et al.
Publicado: (2022)