Cargando…
Robust prediction of hourly PM(2.5) from meteorological data using LightGBM
Retrieving historical fine particulate matter (PM(2.5)) data is key for evaluating the long-term impacts of PM(2.5) on the environment, human health and climate change. Satellite-based aerosol optical depth has been used to estimate PM(2.5), but estimations have largely been undermined by massive mi...
Autores principales: | Zhong, Junting, Zhang, Xiaoye, Gui, Ke, Wang, Yaqiang, Che, Huizheng, Shen, Xiaojing, Zhang, Lei, Zhang, Yangmei, Sun, Junying, Zhang, Wenjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8566180/ https://www.ncbi.nlm.nih.gov/pubmed/34858602 http://dx.doi.org/10.1093/nsr/nwaa307 |
Ejemplares similares
-
Predicting Metabolite–Disease Associations Based on LightGBM Model
por: Zhang, Cheng, et al.
Publicado: (2021) -
Optimized LightGBM Power Fingerprint Identification Based on Entropy Features
por: Lin, Lin, et al.
Publicado: (2022) -
LightGBM Indoor Positioning Method Based on Merged Wi-Fi and Image Fingerprints
por: Zhang, Huiqing, et al.
Publicado: (2021) -
A LightGBM-Based EEG Analysis Method for Driver Mental States Classification
por: Zeng, Hong, et al.
Publicado: (2019) -
Prediction of air quality index based on the SSA-BiLSTM-LightGBM model
por: Zhang, Xiaowen, et al.
Publicado: (2023)