Cargando…
Optical topometry and machine learning to rapidly phenotype stomatal patterning traits for maize QTL mapping
Stomata are adjustable pores on leaf surfaces that regulate the tradeoff of CO(2) uptake with water vapor loss, thus having critical roles in controlling photosynthetic carbon gain and plant water use. The lack of easy, rapid methods for phenotyping epidermal cell traits have limited discoveries abo...
Autores principales: | Xie, Jiayang, Fernandes, Samuel B, Mayfield-Jones, Dustin, Erice, Gorka, Choi, Min, E Lipka, Alexander, Leakey, Andrew D B |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8566313/ https://www.ncbi.nlm.nih.gov/pubmed/34618057 http://dx.doi.org/10.1093/plphys/kiab299 |
Ejemplares similares
-
Plasticity in stomatal behaviour across a gradient of water supply is consistent among field‐grown maize inbred lines with varying stomatal patterning
por: Ding, Risheng, et al.
Publicado: (2022) -
Phenotyping stomatal closure by thermal imaging for GWAS and TWAS of water use efficiency-related genes
por: Pignon, Charles P, et al.
Publicado: (2021) -
Topométrie générale
por: Levallois, J J
Publicado: (1960) -
Machine learning-enabled phenotyping for GWAS and TWAS of WUE traits in 869
field-grown sorghum accessions
por: Ferguson, John N, et al.
Publicado: (2021) -
Deep learning-based high-throughput phenotyping accelerates gene discovery for stomatal traits
por: Zhang, Wei, et al.
Publicado: (2021)