Cargando…
Explainable machine learning predictions of dual-target compounds reveal characteristic structural features
Compounds with defined multi-target activity play an increasingly important role in drug discovery. Structural features that might be signatures of such compounds have mostly remained elusive thus far. We have explored the potential of explainable machine learning to uncover structural motifs that a...
Autores principales: | Feldmann, Christian, Philipps, Maren, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8566526/ https://www.ncbi.nlm.nih.gov/pubmed/34732806 http://dx.doi.org/10.1038/s41598-021-01099-4 |
Ejemplares similares
-
Machine learning reveals that structural features distinguishing promiscuous and non-promiscuous compounds depend on target combinations
por: Feldmann, Christian, et al.
Publicado: (2021) -
Differentiating Inhibitors of Closely Related Protein Kinases with Single- or Multi-Target Activity via Explainable Machine Learning and Feature Analysis
por: Feldmann, Christian, et al.
Publicado: (2022) -
Explaining Accurate Predictions of Multitarget Compounds with Machine Learning Models Derived for Individual Targets
por: Lamens, Alec, et al.
Publicado: (2023) -
Analysis of Biological Screening Compounds with Single- or Multi-Target Activity via Diagnostic Machine Learning
por: Feldmann, Christian, et al.
Publicado: (2020) -
Calculation of exact Shapley values for explaining support vector machine models using the radial basis function kernel
por: Mastropietro, Andrea, et al.
Publicado: (2023)