Cargando…

Selection for constrained peptides that bind to a single target protein

Peptide secondary metabolites are common in nature and have diverse pharmacologically-relevant functions, from antibiotics to cross-kingdom signaling. Here, we present a method to design large libraries of modified peptides in Escherichia coli and screen them in vivo to identify those that bind to a...

Descripción completa

Detalles Bibliográficos
Autores principales: King, Andrew M., Anderson, Daniel A., Glassey, Emerson, Segall-Shapiro, Thomas H., Zhang, Zhengan, Niquille, David L., Embree, Amanda C., Pratt, Katelin, Williams, Thomas L., Gordon, D. Benjamin, Voigt, Christopher A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8566587/
https://www.ncbi.nlm.nih.gov/pubmed/34732700
http://dx.doi.org/10.1038/s41467-021-26350-4
Descripción
Sumario:Peptide secondary metabolites are common in nature and have diverse pharmacologically-relevant functions, from antibiotics to cross-kingdom signaling. Here, we present a method to design large libraries of modified peptides in Escherichia coli and screen them in vivo to identify those that bind to a single target-of-interest. Constrained peptide scaffolds were produced using modified enzymes gleaned from microbial RiPP (ribosomally synthesized and post-translationally modified peptide) pathways and diversified to build large libraries. The binding of a RiPP to a protein target leads to the intein-catalyzed release of an RNA polymerase σ factor, which drives the expression of selectable markers. As a proof-of-concept, a selection was performed for binding to the SARS-CoV-2 Spike receptor binding domain. A 1625 Da constrained peptide (AMK-1057) was found that binds with similar affinity (990 ± 5 nM) as an ACE2-derived peptide. This demonstrates a generalizable method to identify constrained peptides that adhere to a single protein target, as a step towards “molecular glues” for therapeutics and diagnostics.