Cargando…
Detecting Symptom Errors in Neural Machine Translation of Patient Health Information on Depressive Disorders: Developing Interpretable Bayesian Machine Learning Classifiers
Background: Due to its convenience, wide availability, low usage cost, neural machine translation (NMT) has increasing applications in diverse clinical settings and web-based self-diagnosis of diseases. Given the developing nature of NMT tools, this can pose safety risks to multicultural communities...
Autores principales: | Xie, Wenxiu, Ji, Meng, Zhao, Mengdan, Zhou, Tianqi, Yang, Fan, Qian, Xiaobo, Chow, Chi-Yin, Lam, Kam-Yiu, Hao, Tianyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8566668/ https://www.ncbi.nlm.nih.gov/pubmed/34744846 http://dx.doi.org/10.3389/fpsyt.2021.771562 |
Ejemplares similares
-
Probabilistic Prediction of Nonadherence to Psychiatric Disorder Medication from Mental Health Forum Data: Developing and Validating Bayesian Machine Learning Classifiers
por: Ji, Meng, et al.
Publicado: (2022) -
Predicting Risks of Machine Translations of Public Health Resources by Developing Interpretable Machine Learning Classifiers
por: Xie, Wenxiu, et al.
Publicado: (2021) -
Forecasting Erroneous Neural Machine Translation of Disease Symptoms: Development of Bayesian Probabilistic Classifiers for Cross-Lingual Health Translation
por: Ji, Meng, et al.
Publicado: (2021) -
Developing Machine Learning and Statistical Tools to Evaluate the Accessibility of Public Health Advice on Infectious Diseases among Vulnerable People
por: Xie, Wenxiu, et al.
Publicado: (2021) -
Supporting Risk-Aware Use of Online Translation Tools in Delivering Mental Healthcare Services among Spanish-Speaking Populations
por: Xie, Wenxiu, et al.
Publicado: (2021)