Cargando…
Comparative Analysis of Machine Learning and Evolutionary Optimization Algorithms for Precision Micropropagation of Cannabis sativa: Prediction and Validation of in vitro Shoot Growth and Development Based on the Optimization of Light and Carbohydrate Sources
Micropropagation techniques offer opportunity to proliferate, maintain, and study dynamic plant responses in highly controlled environments without confounding external influences, forming the basis for many biotechnological applications. With medicinal and recreational interests for Cannabis sativa...
Autores principales: | Pepe, Marco, Hesami, Mohsen, Small, Finlay, Jones, Andrew Maxwell Phineas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8566924/ https://www.ncbi.nlm.nih.gov/pubmed/34745189 http://dx.doi.org/10.3389/fpls.2021.757869 |
Ejemplares similares
-
Morphological Characterization of Cannabis sativa L. Throughout Its Complete Life Cycle
por: Hesami, Mohsen, et al.
Publicado: (2023) -
Machine Learning-Mediated Development and Optimization of Disinfection Protocol and Scarification Method for Improved In Vitro Germination of Cannabis Seeds
por: Pepe, Marco, et al.
Publicado: (2021) -
Effect of Explant Source on Phenotypic Changes of In Vitro Grown Cannabis Plantlets over Multiple Subcultures
por: Hesami, Mohsen, et al.
Publicado: (2023) -
Cannabis sativa: From Therapeutic Uses to Micropropagation and Beyond
por: Adams, Tristan K., et al.
Publicado: (2021) -
New Insight into Ornamental Applications of Cannabis: Perspectives and Challenges
por: Hesami, Mohsen, et al.
Publicado: (2022)