Cargando…
Prediction of Breast Cancer Recurrence Using a Deep Convolutional Neural Network Without Region-of-Interest Labeling
PURPOSE: The present study aimed to assign a risk score for breast cancer recurrence based on pathological whole slide images (WSIs) using a deep learning model. METHODS: A total of 233 WSIs from 138 breast cancer patients were assigned either a low-risk or a high-risk score based on a 70-gene signa...
Autores principales: | Phan, Nam Nhut, Hsu, Chih-Yi, Huang, Chi-Cheng, Tseng, Ling-Ming, Chuang, Eric Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8567097/ https://www.ncbi.nlm.nih.gov/pubmed/34745954 http://dx.doi.org/10.3389/fonc.2021.734015 |
Ejemplares similares
-
Predicting Breast Cancer Gene Expression Signature by Applying Deep Convolutional Neural Networks From Unannotated Pathological Images
por: Phan, Nam Nhut, et al.
Publicado: (2021) -
Identification and diagnosis of mammographic malignant architectural distortion using a deep learning based mask regional convolutional neural network
por: Liu, Yuanyuan, et al.
Publicado: (2023) -
A system based on deep convolutional neural network improves the detection of early gastric cancer
por: Feng, Jie, et al.
Publicado: (2022) -
Deep convolutional neural networks for multiple histologic types of ovarian tumors classification in ultrasound images
por: Wu, Meijing, et al.
Publicado: (2023) -
Automatic Pancreatic Ductal Adenocarcinoma Detection in Whole Slide Images Using Deep Convolutional Neural Networks
por: Fu, Hao, et al.
Publicado: (2021)