Cargando…
Experimental and Density Functional Theory Studies on a Zinc(II) Coordination Polymer Constructed with 1,3,5-Benzenetricarboxylic Acid and the Derived Nanocomposites from Activated Carbon
[Image: see text] A coordination polymer with the composition C(12)H(20)O(16)Zn(2) (ZnBTC) (BTC = benzene-1,3,5-tricarboxylate) was synthesized under hydrothermal conditions at 120 °C, and its crystal structure was determined using single-crystal X-ray crystallography. First-principles electronic st...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8567384/ https://www.ncbi.nlm.nih.gov/pubmed/34746588 http://dx.doi.org/10.1021/acsomega.1c04037 |
_version_ | 1784594220234833920 |
---|---|
author | Anyama, Chinyere A. Ita, Benedict I. Ayi, Ayi A. Louis, Hitler Okon, Emmanuel E. D. Ogar, Joseph O. Oseghale, Charles O. |
author_facet | Anyama, Chinyere A. Ita, Benedict I. Ayi, Ayi A. Louis, Hitler Okon, Emmanuel E. D. Ogar, Joseph O. Oseghale, Charles O. |
author_sort | Anyama, Chinyere A. |
collection | PubMed |
description | [Image: see text] A coordination polymer with the composition C(12)H(20)O(16)Zn(2) (ZnBTC) (BTC = benzene-1,3,5-tricarboxylate) was synthesized under hydrothermal conditions at 120 °C, and its crystal structure was determined using single-crystal X-ray crystallography. First-principles electronic structure investigation of the compound was carried out using the density functional theory computational approach. The highest occupied molecular orbital, the lowest unoccupied molecular orbital, the energy gap, and the global reactivity descriptors of ZnBTC were investigated in both the gas phase and the solvent phase using the implicit solvation model, while the donor–acceptor interactions were studied using natural bond orbital analyses. The results revealed that ZnBTC is more stable but less reactive in solvent medium. The larger stabilization energy E((2)) indicates a greater interaction of ZnBTC in the solvent than in the gas phase. Orange peel activated carbon and banana peel activated carbon chemically treated with ZnCl(2) and/or KOH were used to modify the synthesis of ZnBTC to obtain nanocomposites. ZnBTC and the nanocomposites were characterized by powder X-ray diffraction (PXRD), thermogravimetric analysis, and Fourier transform infrared. The specific surface area (S(BET)) and the average pore diameter of the materials were determined by nitrogen sorption measurements using the Brunauer–Emmett–Teller (BET) method, while scanning electron microscopy and transmission electron microscopy were used to observe their morphology and particle size, respectively. The PXRD of all the activated carbon materials exhibited peaks at 2θ values of 12.7 and 13.9° corresponding to a d-spacing of 6.94 and 6.32 Å, respectively. The N(2) adsorption–desorption isotherm of the materials are of type II with nanocomposites showing enhanced S(BET) compared to the pristine ZnBTC. The results also revealed that activated carbons from the banana peel and the derived nanocomposites exhibited better porous structure parameters than those obtained from orange peel. The degradation efficiency of methyl orange in aqueous solutions using ZnBTC as a photocatalyst was found to be 52 %, while that of the nanocomposites were enhanced up to 79 %. |
format | Online Article Text |
id | pubmed-8567384 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-85673842021-11-05 Experimental and Density Functional Theory Studies on a Zinc(II) Coordination Polymer Constructed with 1,3,5-Benzenetricarboxylic Acid and the Derived Nanocomposites from Activated Carbon Anyama, Chinyere A. Ita, Benedict I. Ayi, Ayi A. Louis, Hitler Okon, Emmanuel E. D. Ogar, Joseph O. Oseghale, Charles O. ACS Omega [Image: see text] A coordination polymer with the composition C(12)H(20)O(16)Zn(2) (ZnBTC) (BTC = benzene-1,3,5-tricarboxylate) was synthesized under hydrothermal conditions at 120 °C, and its crystal structure was determined using single-crystal X-ray crystallography. First-principles electronic structure investigation of the compound was carried out using the density functional theory computational approach. The highest occupied molecular orbital, the lowest unoccupied molecular orbital, the energy gap, and the global reactivity descriptors of ZnBTC were investigated in both the gas phase and the solvent phase using the implicit solvation model, while the donor–acceptor interactions were studied using natural bond orbital analyses. The results revealed that ZnBTC is more stable but less reactive in solvent medium. The larger stabilization energy E((2)) indicates a greater interaction of ZnBTC in the solvent than in the gas phase. Orange peel activated carbon and banana peel activated carbon chemically treated with ZnCl(2) and/or KOH were used to modify the synthesis of ZnBTC to obtain nanocomposites. ZnBTC and the nanocomposites were characterized by powder X-ray diffraction (PXRD), thermogravimetric analysis, and Fourier transform infrared. The specific surface area (S(BET)) and the average pore diameter of the materials were determined by nitrogen sorption measurements using the Brunauer–Emmett–Teller (BET) method, while scanning electron microscopy and transmission electron microscopy were used to observe their morphology and particle size, respectively. The PXRD of all the activated carbon materials exhibited peaks at 2θ values of 12.7 and 13.9° corresponding to a d-spacing of 6.94 and 6.32 Å, respectively. The N(2) adsorption–desorption isotherm of the materials are of type II with nanocomposites showing enhanced S(BET) compared to the pristine ZnBTC. The results also revealed that activated carbons from the banana peel and the derived nanocomposites exhibited better porous structure parameters than those obtained from orange peel. The degradation efficiency of methyl orange in aqueous solutions using ZnBTC as a photocatalyst was found to be 52 %, while that of the nanocomposites were enhanced up to 79 %. American Chemical Society 2021-10-21 /pmc/articles/PMC8567384/ /pubmed/34746588 http://dx.doi.org/10.1021/acsomega.1c04037 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Anyama, Chinyere A. Ita, Benedict I. Ayi, Ayi A. Louis, Hitler Okon, Emmanuel E. D. Ogar, Joseph O. Oseghale, Charles O. Experimental and Density Functional Theory Studies on a Zinc(II) Coordination Polymer Constructed with 1,3,5-Benzenetricarboxylic Acid and the Derived Nanocomposites from Activated Carbon |
title | Experimental and Density Functional Theory Studies
on a Zinc(II) Coordination Polymer Constructed with 1,3,5-Benzenetricarboxylic
Acid and the Derived Nanocomposites from Activated Carbon |
title_full | Experimental and Density Functional Theory Studies
on a Zinc(II) Coordination Polymer Constructed with 1,3,5-Benzenetricarboxylic
Acid and the Derived Nanocomposites from Activated Carbon |
title_fullStr | Experimental and Density Functional Theory Studies
on a Zinc(II) Coordination Polymer Constructed with 1,3,5-Benzenetricarboxylic
Acid and the Derived Nanocomposites from Activated Carbon |
title_full_unstemmed | Experimental and Density Functional Theory Studies
on a Zinc(II) Coordination Polymer Constructed with 1,3,5-Benzenetricarboxylic
Acid and the Derived Nanocomposites from Activated Carbon |
title_short | Experimental and Density Functional Theory Studies
on a Zinc(II) Coordination Polymer Constructed with 1,3,5-Benzenetricarboxylic
Acid and the Derived Nanocomposites from Activated Carbon |
title_sort | experimental and density functional theory studies
on a zinc(ii) coordination polymer constructed with 1,3,5-benzenetricarboxylic
acid and the derived nanocomposites from activated carbon |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8567384/ https://www.ncbi.nlm.nih.gov/pubmed/34746588 http://dx.doi.org/10.1021/acsomega.1c04037 |
work_keys_str_mv | AT anyamachinyerea experimentalanddensityfunctionaltheorystudiesonazinciicoordinationpolymerconstructedwith135benzenetricarboxylicacidandthederivednanocompositesfromactivatedcarbon AT itabenedicti experimentalanddensityfunctionaltheorystudiesonazinciicoordinationpolymerconstructedwith135benzenetricarboxylicacidandthederivednanocompositesfromactivatedcarbon AT ayiayia experimentalanddensityfunctionaltheorystudiesonazinciicoordinationpolymerconstructedwith135benzenetricarboxylicacidandthederivednanocompositesfromactivatedcarbon AT louishitler experimentalanddensityfunctionaltheorystudiesonazinciicoordinationpolymerconstructedwith135benzenetricarboxylicacidandthederivednanocompositesfromactivatedcarbon AT okonemmanueled experimentalanddensityfunctionaltheorystudiesonazinciicoordinationpolymerconstructedwith135benzenetricarboxylicacidandthederivednanocompositesfromactivatedcarbon AT ogarjosepho experimentalanddensityfunctionaltheorystudiesonazinciicoordinationpolymerconstructedwith135benzenetricarboxylicacidandthederivednanocompositesfromactivatedcarbon AT oseghalecharleso experimentalanddensityfunctionaltheorystudiesonazinciicoordinationpolymerconstructedwith135benzenetricarboxylicacidandthederivednanocompositesfromactivatedcarbon |