Cargando…
State of health prediction of lithium-ion batteries based on machine learning: Advances and perspectives
Accurate state of health (SOH) prediction is significant to guarantee operation safety and avoid latent failures of lithium-ion batteries. With the development of communication and artificial intelligence technologies, a body of researches have been performed toward precise and reliable SOH predicti...
Autores principales: | Shu, Xing, Shen, Shiquan, Shen, Jiangwei, Zhang, Yuanjian, Li, Guang, Chen, Zheng, Liu, Yonggang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8567399/ https://www.ncbi.nlm.nih.gov/pubmed/34761185 http://dx.doi.org/10.1016/j.isci.2021.103265 |
Ejemplares similares
-
Protocol for state-of-health prediction of lithium-ion batteries based on machine learning
por: Shu, Xing, et al.
Publicado: (2022) -
Data on Machine Learning regenerated Lithium-ion battery impedance
por: Temiz, Selcuk, et al.
Publicado: (2022) -
Lithium-ion batteries: advances and applications
por: Pistoia, Gianfranco
Publicado: (2014) -
Advances in Nanomaterials for Lithium-Ion/Post-Lithium-Ion Batteries and Supercapacitors
por: Marinaro, Mario, et al.
Publicado: (2022) -
Toward Enhanced State of Charge Estimation of Lithium-ion Batteries Using Optimized Machine Learning Techniques
por: Hannan, M. A., et al.
Publicado: (2020)