Cargando…
Neuronal classification from network connectivity via adjacency spectral embedding
This work presents a novel strategy for classifying neurons, represented by nodes of a directed graph, based on their circuitry (edge connectivity). We assume a stochastic block model (SBM) in which neurons belong together if they connect to neurons of other groups according to the same probability...
Autores principales: | Mehta, Ketan, Goldin, Rebecca F., Marchette, David, Vogelstein, Joshua T., Priebe, Carey E., Ascoli, Giorgio A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8567830/ https://www.ncbi.nlm.nih.gov/pubmed/34746623 http://dx.doi.org/10.1162/netn_a_00195 |
Ejemplares similares
-
Circuit analysis of the Drosophila brain using connectivity-based neuronal classification reveals organization of key communication pathways
por: Mehta, Ketan, et al.
Publicado: (2023) -
Guided graph spectral embedding: Application to the C. elegans connectome
por: Petrovic, Miljan, et al.
Publicado: (2019) -
On a two-truths phenomenon in spectral graph clustering
por: Priebe, Carey E., et al.
Publicado: (2019) -
Bisected graph matching improves automated pairing of bilaterally homologous neurons from connectomes
por: Pedigo, Benjamin D., et al.
Publicado: (2023) -
Are mental properties supervenient on brain properties?
por: Vogelstein, Joshua T., et al.
Publicado: (2011)