Cargando…
Computational modelling of self-reported dietary carbohydrate intake on glucose concentrations in patients undergoing Roux-en-Y gastric bypass versus one-anastomosis gastric bypass
OBJECTIVES: Our aim was to investigate in a real-life setting the use of machine learning for modelling the postprandial glucose concentrations in morbidly obese patients undergoing Roux-en-Y gastric bypass (RYGB) or one-anastomosis gastric bypass (OAGB). METHODS: As part of the prospective randomiz...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8567939/ https://www.ncbi.nlm.nih.gov/pubmed/34714211 http://dx.doi.org/10.1080/07853890.2021.1964035 |
_version_ | 1784594328751964160 |
---|---|
author | Ashrafi, Reza A. Ahola, Aila J. Rosengård-Bärlund, Milla Saarinen, Tuure Heinonen, Sini Juuti, Anne Marttinen, Pekka Pietiläinen, Kirsi H. |
author_facet | Ashrafi, Reza A. Ahola, Aila J. Rosengård-Bärlund, Milla Saarinen, Tuure Heinonen, Sini Juuti, Anne Marttinen, Pekka Pietiläinen, Kirsi H. |
author_sort | Ashrafi, Reza A. |
collection | PubMed |
description | OBJECTIVES: Our aim was to investigate in a real-life setting the use of machine learning for modelling the postprandial glucose concentrations in morbidly obese patients undergoing Roux-en-Y gastric bypass (RYGB) or one-anastomosis gastric bypass (OAGB). METHODS: As part of the prospective randomized open-label trial (RYSA), data from obese (BMI ≥35 kg/m(2)) non-diabetic adult participants were included. Glucose concentrations, measured with FreeStyle Libre, were recorded over 14 preoperative and 14 postoperative days. During these periods, 3-day food intake was self-reported. A machine learning model was applied to estimate glycaemic responses to the reported carbohydrate intakes before and after the bariatric surgeries. RESULTS: Altogether, 10 participants underwent RYGB and 7 participants OAGB surgeries. The glucose concentrations and carbohydrate intakes were reduced postoperatively in both groups. The relative time spent in hypoglycaemia increased regardless of the operation (RYGB, from 9.2 to 28.2%; OAGB, from 1.8 to 37.7%). Postoperatively, we observed an increase in the height of the fitted response curve and a reduction in its width, suggesting that the same amount of carbohydrates caused a larger increase in the postprandial glucose response and that the clearance of the meal-derived blood glucose was faster, with no clinically meaningful differences between the surgeries. CONCLUSIONS: A detailed analysis of the glycaemic responses using food diaries has previously been difficult because of the noisy meal data. The utilized machine learning model resolved this by modelling the uncertainty in meal times. Such an approach is likely also applicable in other applications involving dietary data. A marked reduction in overall glycaemia, increase in postprandial glucose response, and rapid glucose clearance from the circulation immediately after surgery are evident after both RYGB and OAGB. Whether nondiabetic individuals would benefit from monitoring the post-surgery hypoglycaemias and the potential to prevent them by dietary means should be investigated. KEY MESSAGES: The use of a novel machine learning model was applicable for combining patient-reported data and time-series data in this clinical study. Marked increase in postprandial glucose concentrations and rapid glucose clearance were observed after both Roux-en-Y gastric bypass and one-anastomosis gastric bypass surgeries. Whether nondiabetic individuals would benefit from monitoring the post-surgery hypoglycaemias and the potential to prevent them by dietary means should be investigated. |
format | Online Article Text |
id | pubmed-8567939 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-85679392021-11-05 Computational modelling of self-reported dietary carbohydrate intake on glucose concentrations in patients undergoing Roux-en-Y gastric bypass versus one-anastomosis gastric bypass Ashrafi, Reza A. Ahola, Aila J. Rosengård-Bärlund, Milla Saarinen, Tuure Heinonen, Sini Juuti, Anne Marttinen, Pekka Pietiläinen, Kirsi H. Ann Med Endocrinology OBJECTIVES: Our aim was to investigate in a real-life setting the use of machine learning for modelling the postprandial glucose concentrations in morbidly obese patients undergoing Roux-en-Y gastric bypass (RYGB) or one-anastomosis gastric bypass (OAGB). METHODS: As part of the prospective randomized open-label trial (RYSA), data from obese (BMI ≥35 kg/m(2)) non-diabetic adult participants were included. Glucose concentrations, measured with FreeStyle Libre, were recorded over 14 preoperative and 14 postoperative days. During these periods, 3-day food intake was self-reported. A machine learning model was applied to estimate glycaemic responses to the reported carbohydrate intakes before and after the bariatric surgeries. RESULTS: Altogether, 10 participants underwent RYGB and 7 participants OAGB surgeries. The glucose concentrations and carbohydrate intakes were reduced postoperatively in both groups. The relative time spent in hypoglycaemia increased regardless of the operation (RYGB, from 9.2 to 28.2%; OAGB, from 1.8 to 37.7%). Postoperatively, we observed an increase in the height of the fitted response curve and a reduction in its width, suggesting that the same amount of carbohydrates caused a larger increase in the postprandial glucose response and that the clearance of the meal-derived blood glucose was faster, with no clinically meaningful differences between the surgeries. CONCLUSIONS: A detailed analysis of the glycaemic responses using food diaries has previously been difficult because of the noisy meal data. The utilized machine learning model resolved this by modelling the uncertainty in meal times. Such an approach is likely also applicable in other applications involving dietary data. A marked reduction in overall glycaemia, increase in postprandial glucose response, and rapid glucose clearance from the circulation immediately after surgery are evident after both RYGB and OAGB. Whether nondiabetic individuals would benefit from monitoring the post-surgery hypoglycaemias and the potential to prevent them by dietary means should be investigated. KEY MESSAGES: The use of a novel machine learning model was applicable for combining patient-reported data and time-series data in this clinical study. Marked increase in postprandial glucose concentrations and rapid glucose clearance were observed after both Roux-en-Y gastric bypass and one-anastomosis gastric bypass surgeries. Whether nondiabetic individuals would benefit from monitoring the post-surgery hypoglycaemias and the potential to prevent them by dietary means should be investigated. Taylor & Francis 2021-10-29 /pmc/articles/PMC8567939/ /pubmed/34714211 http://dx.doi.org/10.1080/07853890.2021.1964035 Text en © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Endocrinology Ashrafi, Reza A. Ahola, Aila J. Rosengård-Bärlund, Milla Saarinen, Tuure Heinonen, Sini Juuti, Anne Marttinen, Pekka Pietiläinen, Kirsi H. Computational modelling of self-reported dietary carbohydrate intake on glucose concentrations in patients undergoing Roux-en-Y gastric bypass versus one-anastomosis gastric bypass |
title | Computational modelling of self-reported dietary carbohydrate intake on glucose concentrations in patients undergoing Roux-en-Y gastric bypass versus one-anastomosis gastric bypass |
title_full | Computational modelling of self-reported dietary carbohydrate intake on glucose concentrations in patients undergoing Roux-en-Y gastric bypass versus one-anastomosis gastric bypass |
title_fullStr | Computational modelling of self-reported dietary carbohydrate intake on glucose concentrations in patients undergoing Roux-en-Y gastric bypass versus one-anastomosis gastric bypass |
title_full_unstemmed | Computational modelling of self-reported dietary carbohydrate intake on glucose concentrations in patients undergoing Roux-en-Y gastric bypass versus one-anastomosis gastric bypass |
title_short | Computational modelling of self-reported dietary carbohydrate intake on glucose concentrations in patients undergoing Roux-en-Y gastric bypass versus one-anastomosis gastric bypass |
title_sort | computational modelling of self-reported dietary carbohydrate intake on glucose concentrations in patients undergoing roux-en-y gastric bypass versus one-anastomosis gastric bypass |
topic | Endocrinology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8567939/ https://www.ncbi.nlm.nih.gov/pubmed/34714211 http://dx.doi.org/10.1080/07853890.2021.1964035 |
work_keys_str_mv | AT ashrafirezaa computationalmodellingofselfreporteddietarycarbohydrateintakeonglucoseconcentrationsinpatientsundergoingrouxenygastricbypassversusoneanastomosisgastricbypass AT aholaailaj computationalmodellingofselfreporteddietarycarbohydrateintakeonglucoseconcentrationsinpatientsundergoingrouxenygastricbypassversusoneanastomosisgastricbypass AT rosengardbarlundmilla computationalmodellingofselfreporteddietarycarbohydrateintakeonglucoseconcentrationsinpatientsundergoingrouxenygastricbypassversusoneanastomosisgastricbypass AT saarinentuure computationalmodellingofselfreporteddietarycarbohydrateintakeonglucoseconcentrationsinpatientsundergoingrouxenygastricbypassversusoneanastomosisgastricbypass AT heinonensini computationalmodellingofselfreporteddietarycarbohydrateintakeonglucoseconcentrationsinpatientsundergoingrouxenygastricbypassversusoneanastomosisgastricbypass AT juutianne computationalmodellingofselfreporteddietarycarbohydrateintakeonglucoseconcentrationsinpatientsundergoingrouxenygastricbypassversusoneanastomosisgastricbypass AT marttinenpekka computationalmodellingofselfreporteddietarycarbohydrateintakeonglucoseconcentrationsinpatientsundergoingrouxenygastricbypassversusoneanastomosisgastricbypass AT pietilainenkirsih computationalmodellingofselfreporteddietarycarbohydrateintakeonglucoseconcentrationsinpatientsundergoingrouxenygastricbypassversusoneanastomosisgastricbypass |