Cargando…
Examining the Utility of Social Media in COVID-19 Vaccination: Unsupervised Learning of 672,133 Twitter Posts
BACKGROUND: Although COVID-19 vaccines have recently become available, efforts in global mass vaccination can be hampered by the widespread issue of vaccine hesitancy. OBJECTIVE: The aim of this study was to use social media data to capture close-to-real-time public perspectives and sentiments regar...
Autores principales: | Liew, Tau Ming, Lee, Cia Sin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8568045/ https://www.ncbi.nlm.nih.gov/pubmed/34583316 http://dx.doi.org/10.2196/29789 |
Ejemplares similares
-
Examining Public Messaging on Influenza Vaccine over Social Media: Unsupervised Deep Learning of 235,261 Twitter Posts from 2017 to 2023
por: Ng, Qin Xiang, et al.
Publicado: (2023) -
Examining the Public Messaging on ‘Loneliness’ over Social Media: An Unsupervised Machine Learning Analysis of Twitter Posts over the Past Decade
por: Ng, Qin Xiang, et al.
Publicado: (2023) -
Examining the Prevailing Negative Sentiments Related to COVID-19 Vaccination: Unsupervised Deep Learning of Twitter Posts over a 16 Month Period
por: Ng, Qin Xiang, et al.
Publicado: (2022) -
Examining the Negative Sentiments Related to Influenza Vaccination from 2017 to 2022: An Unsupervised Deep Learning Analysis of 261,613 Twitter Posts
por: Ng, Qin Xiang, et al.
Publicado: (2023) -
Public perception on 'healthy ageing' in the past decade: An unsupervised machine learning of 63,809 Twitter posts
por: Ng, Qin Xiang, et al.
Publicado: (2023)