Cargando…

Application of COVID-19 single-use shredded nitrile gloves in structural concrete: Case study from Australia

The use of single-use nitrile gloves has been on a sharp incline since the Coronavirus pandemic first started in late 2019. This led to a significant increase in the generation of this clinical waste that requires various recycling solutions to reduce its environmental impact from disposal or incine...

Descripción completa

Detalles Bibliográficos
Autores principales: Kilmartin-Lynch, Shannon, Roychand, Rajeev, Saberian, Mohammad, Li, Jie, Zhang, Guomin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8568329/
https://www.ncbi.nlm.nih.gov/pubmed/34742992
http://dx.doi.org/10.1016/j.scitotenv.2021.151423
Descripción
Sumario:The use of single-use nitrile gloves has been on a sharp incline since the Coronavirus pandemic first started in late 2019. This led to a significant increase in the generation of this clinical waste that requires various recycling solutions to reduce its environmental impact from disposal or incineration. This paper explores its application in structural concrete by adding shredded nitrile gloves at 0.1%, 0.2%, and 0.3% of the volume of concrete. The compressive strength, modulus of elasticity, ultrasonic pulse velocity, and SEM-EDS analysis were undertaken to ascertain the effect of different concentrations of shredded nitrile gloves on the mechanical properties, quality of concrete, and its bond performance with the cement matrix. The results demonstrate that the inclusion of up to 0.2% of shredded nitrile gloves can provide ~22% improvement in the compressive strength of blended concrete composites at 28-days of curing. In comparison, the inclusion of 0.3% of shredded nitrile gloves shows improvements of ~20% in compressive strength at 28-days. The SEM-EDS analysis shows a very good bond formation between the nitrile rubber and the cement matrix with no gap identified in the interfacial transition zone (ITZ).