Cargando…

Study on the Mechanism of Liuwei Dihuang Pills in Treating Parkinson's Disease Based on Network Pharmacology

BACKGROUND: Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly people. Liuwei Dihuang (LWDH) pills have a good effect on PD, but its mechanism remains unclear. Network pharmacology is the result of integrating basic theories and research methods of medicin...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Dongtao, Zeng, Yudan, Tang, Deyu, Cai, Yongming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8568527/
https://www.ncbi.nlm.nih.gov/pubmed/34746302
http://dx.doi.org/10.1155/2021/4490081
_version_ 1784594459571257344
author Lin, Dongtao
Zeng, Yudan
Tang, Deyu
Cai, Yongming
author_facet Lin, Dongtao
Zeng, Yudan
Tang, Deyu
Cai, Yongming
author_sort Lin, Dongtao
collection PubMed
description BACKGROUND: Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly people. Liuwei Dihuang (LWDH) pills have a good effect on PD, but its mechanism remains unclear. Network pharmacology is the result of integrating basic theories and research methods of medicine, biology, computer science, bioinformatics, and other disciplines, which can systematically and comprehensively reflect the mechanism of drug intervention in disease networks. METHODS: The main components and targets of herbs in LWDH pills were obtained through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Its active components were screened based on absorption, distribution, metabolism, and excretion (ADME); the PD-related targets were obtained from the Genecards, OMIM, TTD, and DRUGBANK databases. We used R to take the intersection of LWDH- and PD-related targets and Cytoscape software to construct the drug-component-target network. Moreover, STRING and Cytoscape software was used to analyze protein–protein interactions (PPI), construct a PPI network, and explore potential protein functional modules in the network. The Metascape platform was used to perform KEGG pathway and GO function enrichment analyses. Finally, molecular docking was performed to verify whether the compound and target have good binding activity. RESULTS: After screening and deduplication, 210 effective active ingredients, 204 drug targets, 4333 disease targets, and 162 drug-disease targets were obtained. We consequently constructed a drug-component-targets network and a PPI-drug-disease-targets network. The results showed that the hub components of LWDH pills were quercetin, stigmasterol, kaempferol, and beta-sitosterol; the hub targets were AKT1, VEGFA, and IL6. GO and KEGG enrichment analyses showed that these targets are involved in neuronal death, G protein-coupled amine receptor activity, reactive oxygen species metabolic processes, membrane rafts, MAPK signaling pathways, cellular senescence, and other biological processes. Molecular docking showed that the hub components were in good agreement with the hub targets. CONCLUSION: LWDH pills have implications for the treatment of PD since they contain several active components, target multiple ligands, and activate various pathways. The hub components possibly include quercetin, stigmasterol, kaempferol, and beta-sitosterol and act through pairing with hub targets, such as AKT1, VEGFA, and IL6, to regulate neuronal death, G protein-coupled amine receptor activity, reactive oxygen species metabolic process, membrane raft, MAPK signaling pathway, and cellular senescence for the treatment of PD.
format Online
Article
Text
id pubmed-8568527
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-85685272021-11-05 Study on the Mechanism of Liuwei Dihuang Pills in Treating Parkinson's Disease Based on Network Pharmacology Lin, Dongtao Zeng, Yudan Tang, Deyu Cai, Yongming Biomed Res Int Research Article BACKGROUND: Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly people. Liuwei Dihuang (LWDH) pills have a good effect on PD, but its mechanism remains unclear. Network pharmacology is the result of integrating basic theories and research methods of medicine, biology, computer science, bioinformatics, and other disciplines, which can systematically and comprehensively reflect the mechanism of drug intervention in disease networks. METHODS: The main components and targets of herbs in LWDH pills were obtained through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Its active components were screened based on absorption, distribution, metabolism, and excretion (ADME); the PD-related targets were obtained from the Genecards, OMIM, TTD, and DRUGBANK databases. We used R to take the intersection of LWDH- and PD-related targets and Cytoscape software to construct the drug-component-target network. Moreover, STRING and Cytoscape software was used to analyze protein–protein interactions (PPI), construct a PPI network, and explore potential protein functional modules in the network. The Metascape platform was used to perform KEGG pathway and GO function enrichment analyses. Finally, molecular docking was performed to verify whether the compound and target have good binding activity. RESULTS: After screening and deduplication, 210 effective active ingredients, 204 drug targets, 4333 disease targets, and 162 drug-disease targets were obtained. We consequently constructed a drug-component-targets network and a PPI-drug-disease-targets network. The results showed that the hub components of LWDH pills were quercetin, stigmasterol, kaempferol, and beta-sitosterol; the hub targets were AKT1, VEGFA, and IL6. GO and KEGG enrichment analyses showed that these targets are involved in neuronal death, G protein-coupled amine receptor activity, reactive oxygen species metabolic processes, membrane rafts, MAPK signaling pathways, cellular senescence, and other biological processes. Molecular docking showed that the hub components were in good agreement with the hub targets. CONCLUSION: LWDH pills have implications for the treatment of PD since they contain several active components, target multiple ligands, and activate various pathways. The hub components possibly include quercetin, stigmasterol, kaempferol, and beta-sitosterol and act through pairing with hub targets, such as AKT1, VEGFA, and IL6, to regulate neuronal death, G protein-coupled amine receptor activity, reactive oxygen species metabolic process, membrane raft, MAPK signaling pathway, and cellular senescence for the treatment of PD. Hindawi 2021-10-28 /pmc/articles/PMC8568527/ /pubmed/34746302 http://dx.doi.org/10.1155/2021/4490081 Text en Copyright © 2021 Dongtao Lin et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Lin, Dongtao
Zeng, Yudan
Tang, Deyu
Cai, Yongming
Study on the Mechanism of Liuwei Dihuang Pills in Treating Parkinson's Disease Based on Network Pharmacology
title Study on the Mechanism of Liuwei Dihuang Pills in Treating Parkinson's Disease Based on Network Pharmacology
title_full Study on the Mechanism of Liuwei Dihuang Pills in Treating Parkinson's Disease Based on Network Pharmacology
title_fullStr Study on the Mechanism of Liuwei Dihuang Pills in Treating Parkinson's Disease Based on Network Pharmacology
title_full_unstemmed Study on the Mechanism of Liuwei Dihuang Pills in Treating Parkinson's Disease Based on Network Pharmacology
title_short Study on the Mechanism of Liuwei Dihuang Pills in Treating Parkinson's Disease Based on Network Pharmacology
title_sort study on the mechanism of liuwei dihuang pills in treating parkinson's disease based on network pharmacology
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8568527/
https://www.ncbi.nlm.nih.gov/pubmed/34746302
http://dx.doi.org/10.1155/2021/4490081
work_keys_str_mv AT lindongtao studyonthemechanismofliuweidihuangpillsintreatingparkinsonsdiseasebasedonnetworkpharmacology
AT zengyudan studyonthemechanismofliuweidihuangpillsintreatingparkinsonsdiseasebasedonnetworkpharmacology
AT tangdeyu studyonthemechanismofliuweidihuangpillsintreatingparkinsonsdiseasebasedonnetworkpharmacology
AT caiyongming studyonthemechanismofliuweidihuangpillsintreatingparkinsonsdiseasebasedonnetworkpharmacology