Cargando…
Deep-Learning-Based CT Imaging in the Quantitative Evaluation of Chronic Kidney Diseases
This study focused on the application of deep learning algorithms in the segmentation of CT images, so as to diagnose chronic kidney diseases accurately and quantitatively. First, the residual dual-attention module (RDA module) was used for automatic segmentation of renal cysts in CT images. 79 pati...
Autores principales: | Fu, Xu, Liu, Huaiqin, Bi, Xiaowang, Gong, Xiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8568539/ https://www.ncbi.nlm.nih.gov/pubmed/34745497 http://dx.doi.org/10.1155/2021/3774423 |
Ejemplares similares
-
Artificial Intelligence-based MRI Images for Brain in Prediction of Alzheimer's Disease
por: Bi, Xiaowang, et al.
Publicado: (2021) -
Quantitative evaluation of CT scan images to determinate the prognosis of COVID-19 patient using deep learning
por: Joni, Saeid Sadeghi, et al.
Publicado: (2023) -
Deep Learning Assisted Localization of Polycystic Kidney on Contrast-Enhanced CT Images
por: Onthoni, Djeane Debora, et al.
Publicado: (2020) -
Deep-kidney: an effective deep learning framework for chronic kidney disease prediction
por: Saif, Dina, et al.
Publicado: (2023) -
Measurement of Glomerular Filtration Rate using Quantitative SPECT/CT and Deep-learning-based Kidney Segmentation
por: Park, Junyoung, et al.
Publicado: (2019)